論文の概要: Differentiable Implicit Layers
- arxiv url: http://arxiv.org/abs/2010.07078v2
- Date: Mon, 16 Nov 2020 10:25:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 12:25:42.926725
- Title: Differentiable Implicit Layers
- Title(参考訳): 微分可能なインシシシト層
- Authors: Andreas Look, Simona Doneva, Melih Kandemir, Rainer Gemulla, Jan
Peters
- Abstract要約: 本稿では,非制約な暗黙関数に対する効率的なバックプロパゲーション手法を提案する。
提案手法は,暗黙的オイラー法によるニューラルODE,モデル予測制御におけるシステム同定など,様々な応用について実証する。
- 参考スコア(独自算出の注目度): 37.14578406197477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce an efficient backpropagation scheme for
non-constrained implicit functions. These functions are parametrized by a set
of learnable weights and may optionally depend on some input; making them
perfectly suitable as a learnable layer in a neural network. We demonstrate our
scheme on different applications: (i) neural ODEs with the implicit Euler
method, and (ii) system identification in model predictive control.
- Abstract(参考訳): 本稿では,非拘束暗黙関数に対する効率的なバックプロパゲーションスキームを提案する。
これらの関数は学習可能な重みのセットによってパラメータ化され、任意の入力に依存する可能性がある。
異なるアプリケーションでこのスキームを実演します
(i)暗黙のオイラー法によるニューラルヌクレオチド、及び
(ii)モデル予測制御におけるシステム同定
関連論文リスト
- Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - A Constructive Approach to Function Realization by Neural Stochastic
Differential Equations [8.04975023021212]
システム力学における構造的制約を導入し、そのようなシステムで実現可能な関数のクラスを特徴付ける。
これらのシステムは、ニューラル微分方程式(ニューラルSDE)、決定論的力学系、読み出しマップのカスケード相互接続として実装される。
論文 参考訳(メタデータ) (2023-07-01T03:44:46Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
偏微分方程式(PDE)をシミュレートする際のサブグリッドスケールモデル学習のための新しい手法を提案する。
このアプローチでは、ニューラルネットワークは粗大から細小のグリッドマップを学習するために使用され、これはサブグリッドスケールのパラメータ化と見なすことができる。
提案手法はNODEの利点を継承し,サブグリッドスケールのパラメータ化,近似結合演算子,低次解法の効率向上に利用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:45:09Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
アダプティブと呼ばれるいくつかのODEソルバは、目の前の問題の複雑さに応じて評価戦略を適用することができる。
本稿では,動的システムモデリングのためのブラックボックスとして適応型ソルバをシームレスに利用できない理由を示すための簡単な実験について述べる。
論文 参考訳(メタデータ) (2022-11-13T17:48:04Z) - On the Forward Invariance of Neural ODEs [92.07281135902922]
本稿では,ニューラル常微分方程式(ODE)が出力仕様を満たすことを保証するための新しい手法を提案する。
提案手法では,出力仕様を学習システムのパラメータや入力の制約に変換するために,制御障壁関数のクラスを用いる。
論文 参考訳(メタデータ) (2022-10-10T15:18:28Z) - Adaptive Group Lasso Neural Network Models for Functions of Few
Variables and Time-Dependent Data [4.18804572788063]
対象関数をディープニューラルネットワークで近似し、適切な隠れ層の重みに適応したグループLassoを強制する。
実験により,提案手法はスパース辞書行列法を含む最近の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-08-24T16:16:46Z) - Learning stochastic dynamical systems with neural networks mimicking the
Euler-Maruyama scheme [14.436723124352817]
本稿では,SDEのパラメータを組み込みのSDE統合方式でニューラルネットワークで表現するデータ駆動手法を提案する。
このアルゴリズムは、幾何学的ブラウン運動とロレンツ-63モデルのバージョンに適用される。
論文 参考訳(メタデータ) (2021-05-18T11:41:34Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。