論文の概要: Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations
- arxiv url: http://arxiv.org/abs/2010.07522v2
- Date: Thu, 27 Jan 2022 02:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 03:53:22.648398
- Title: Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations
- Title(参考訳): 文脈表現による拡張テーブルフィリングを用いた名前付きエンティティ認識と関係抽出
- Authors: Youmi Ma, Tatsuya Hiraoka, Naoaki Okazaki
- Abstract要約: 提案手法は,複雑な手作り特徴やニューラルネットワークアーキテクチャを伴わずに,エンティティ参照と長距離依存関係の表現を計算する。
我々はまた、歴史に基づく予測や検索戦略に頼ることなく、関係ラベルを一度に予測するためにテンソルドット積を適用する。
その単純さにもかかわらず、実験の結果、提案手法はCoNLL04とACE05の英語データセット上で最先端の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 14.614028420899409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, a novel method for extracting named entities and relations
from unstructured text based on the table representation is presented. By using
contextualized word embeddings, the proposed method computes representations
for entity mentions and long-range dependencies without complicated
hand-crafted features or neural-network architectures. We also adapt a tensor
dot-product to predict relation labels all at once without resorting to
history-based predictions or search strategies. These advances significantly
simplify the model and algorithm for the extraction of named entities and
relations. Despite its simplicity, the experimental results demonstrate that
the proposed method outperforms the state-of-the-art methods on the CoNLL04 and
ACE05 English datasets. We also confirm that the proposed method achieves a
comparable performance with the state-of-the-art NER models on the ACE05
datasets when multiple sentences are provided for context aggregation.
- Abstract(参考訳): 本研究では,テーブル表現に基づく非構造化テキストから名前付きエンティティと関係を抽出する新しい手法を提案する。
コンテキスト化された単語埋め込みを用いることで、複雑な手作り機能やニューラルネットワークアーキテクチャを使わずに、エンティティ参照や長距離依存関係の表現を計算する。
我々はまた、歴史に基づく予測や検索戦略に頼ることなく、関係ラベルを一度に予測するためにテンソルドット積を適用する。
これらの進歩は、名前付きエンティティと関係を抽出するためのモデルとアルゴリズムを著しく単純化する。
その単純さにもかかわらず、実験の結果、提案手法はCoNLL04とACE05の英語データセット上で最先端の手法よりも優れていることが示された。
また,提案手法は,コンテキストアグリゲーションのための複数の文が提供される場合に,ACE05データセット上の最先端のNERモデルと同等の性能が得られることを確認した。
関連論文リスト
- Retrieval-Enhanced Named Entity Recognition [1.2187048691454239]
RENERは、In-Context Learningと情報検索技術に基づく自己回帰言語モデルを用いたエンティティ認識手法である。
実験の結果,CrossNERコレクションでは,提案手法を用いて最先端の性能を実現することができた。
論文 参考訳(メタデータ) (2024-10-17T01:12:48Z) - GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction [3.579132482505273]
自然言語処理(NLP)における情報抽出は重要な課題である
グラフ構造学習(GSL)として定式化する手法を提案する。
この定式化により、エンティティとリレーショナル予測のためのより良い相互作用と構造インフォームド決定が可能になる。
論文 参考訳(メタデータ) (2024-04-18T20:09:37Z) - Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
関係抽出は、本質的にはテキスト分類問題であり、事前学習言語モデル(LM)を微調整することで取り組める。
既存のアプローチでは、LMを微調整して頭と尾のエンティティの埋め込みを学習し、それらのエンティティの埋め込みから関係を予測する。
本稿では,より直接的な方法で関係を捉えることにより,関係抽出モデルを改善することができるという仮説を立てる。
論文 参考訳(メタデータ) (2023-12-18T09:58:19Z) - Relational Extraction on Wikipedia Tables using Convolutional and Memory
Networks [6.200672130699805]
関係抽出(Relation extract、RE)は、テキスト内のエンティティ間の関係を抽出するタスクである。
我々は、エンティティをエンコードするために、畳み込みニューラルネットワーク(CNN)とBidirectional-Long Short Term Memory(BiLSTM)ネットワークからなる新しいモデルを導入する。
論文 参考訳(メタデータ) (2023-07-11T22:36:47Z) - Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
本研究は,対象物,文,画像全体に基づいて,テキストおよび視覚的証拠を検索することを提案する。
我々は,オブジェクトレベル,画像レベル,文レベル情報を合成し,同一性と異なるモダリティ間の推論を改善する新しい手法を開発した。
論文 参考訳(メタデータ) (2023-05-25T15:26:13Z) - Image Synthesis via Semantic Composition [74.68191130898805]
本稿では,その意味的レイアウトに基づいて現実的なイメージを合成する新しい手法を提案する。
類似した外観を持つ物体に対して、類似した表現を共有するという仮説が立てられている。
本手法は, 空間的変化と関連表現の両方を生じる, 外観相関による領域間の依存関係を確立する。
論文 参考訳(メタデータ) (2021-09-15T02:26:07Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
グラフ構造における関係をエンコードするために文埋め込みを訓練する新しいコントラスト学習フレームワークを提案する。
結果として得られた関係認識文の埋め込みは、関係抽出タスクにおける最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-02T10:58:27Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
本稿では,プログラムの構成をモデル化し,プログラムを発話にマップする生成モデルを提案する。
PCFGと事前学習されたBARTの簡易性により,既存のデータから効率的に生成モデルを学習することができる。
GeoQuery と Spider の標準ベンチマークで解析する text-to-Query の in-domain と out-of-domain の両方で、この手法を評価します。
論文 参考訳(メタデータ) (2021-04-12T21:24:02Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Multidirectional Associative Optimization of Function-Specific Word
Representations [86.87082468226387]
本稿では,関係する単語群間の関連を学習するためのニューラルネットワークフレームワークを提案する。
我々のモデルは結合関数固有の単語ベクトル空間を誘導し、例えば可塑性SVO合成のベクトルが近接して配置される。
このモデルは、共同空間においても単語群のメンバーシップに関する情報を保持し、SVO構造を前提とした複数のタスクに効果的に適用することができる。
論文 参考訳(メタデータ) (2020-05-11T17:07:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。