論文の概要: Robust in Practice: Adversarial Attacks on Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2010.08544v2
- Date: Fri, 26 Feb 2021 06:24:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 22:03:43.123215
- Title: Robust in Practice: Adversarial Attacks on Quantum Machine Learning
- Title(参考訳): robust in practice: 量子機械学習に対する敵対的攻撃
- Authors: Haoran Liao, Ian Convy, William J. Huggins, and K. Birgitta Whaley
- Abstract要約: 最先端の古典的ニューラルネットワークは、小さな対向性摂動に弱いことが観察されている。
量子機械学習(QML)モデルでは、より深刻な脆弱性が指摘されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art classical neural networks are observed to be vulnerable to
small crafted adversarial perturbations. A more severe vulnerability has been
noted for quantum machine learning (QML) models classifying Haar-random pure
states. This stems from the concentration of measure phenomenon, a property of
the metric space when sampled probabilistically, and is independent of the
classification protocol. In order to provide insights into the adversarial
robustness of a quantum classifier on real-world classification tasks, we focus
on the adversarial robustness in classifying a subset of encoded states that
are smoothly generated from a Gaussian latent space. We show that the
vulnerability of this task is considerably weaker than that of classifying
Haar-random pure states. In particular, we find only mildly polynomially
decreasing robustness in the number of qubits, in contrast to the exponentially
decreasing robustness when classifying Haar-random pure states and suggesting
that QML models can be useful for real-world classification tasks.
- Abstract(参考訳): 最先端の古典的ニューラルネットワークは、小さな敵対的摂動に対して脆弱である。
量子機械学習(QML)モデルでは、より深刻な脆弱性が指摘されている。
これは、計量空間が確率的にサンプリングされるときの特性である測度現象の集中に由来し、分類プロトコルとは独立である。
実世界の分類タスクにおける量子分類器の逆ロバスト性に関する知見を提供するため、ガウス的潜在空間からスムーズに生成される符号化状態のサブセットを分類する逆ロバスト性に着目した。
このタスクの脆弱性は、Haar-random純状態の分類よりもかなり弱いことを示す。
特に,haar-random pure状態の分類において指数関数的にロバスト性が減少するのに対し,量子ビット数のロバスト性は軽度に多項式的に減少し,qmlモデルが実世界の分類タスクに有用であることが示唆された。
関連論文リスト
- Adversarial Robustness Guarantees for Quantum Classifiers [0.4934360430803066]
本稿では,QMLアルゴリズムの量子特性が,このような攻撃に対する基本的保護を導出できることを示す。
我々は、この保護の量子源を特定するために、多体物理学のツールを活用している。
論文 参考訳(メタデータ) (2024-05-16T18:00:01Z) - Universal adversarial perturbations for multiple classification tasks
with quantum classifiers [0.0]
量子敵対機械学習は、敵対的摂動に対する量子学習システムの脆弱性を研究する。
本稿では、不均一な分類タスクの文脈における量子普遍摂動について考察する。
2つの異なる分類タスクにおいて、ほぼ最先端の精度を達成する量子分類器は、慎重に作られた1つの普遍摂動によって決定的に欺くことができる。
論文 参考訳(メタデータ) (2023-06-21T02:02:41Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Benchmarking Adversarially Robust Quantum Machine Learning at Scale [20.76790069530767]
簡単な画像データセットと複雑な画像データセットの両方に対して厳密なトレーニングを行うことで、量子MLネットワークのロバスト性をベンチマークする。
以上の結果から,QVCは古典的敵意攻撃に対して顕著に強靭性を示した。
量子と古典的ネットワークの結果を組み合わせることで,新たな敵攻撃検出技術を提案する。
論文 参考訳(メタデータ) (2022-11-23T03:26:16Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
量子ランダムな回転雑音を加えることで、敵攻撃に対する量子分類器のロバスト性を向上できることを示す。
我々は、量子分類器が敵の例に対して防御できるように、証明された堅牢性を導出する。
論文 参考訳(メタデータ) (2022-11-02T05:17:04Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Detecting Adversarial Examples for Speech Recognition via Uncertainty
Quantification [21.582072216282725]
機械学習システム、特に自動音声認識(ASR)システムは、敵の攻撃に対して脆弱である。
本稿では,ハイブリッドASRシステムに着目し,攻撃時の不確実性を示す能力に関する4つの音響モデルを比較した。
我々は、受信演算子曲線スコア0.99以上の領域の逆例を検出することができる。
論文 参考訳(メタデータ) (2020-05-24T19:31:02Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
量子情報処理におけるノイズは、特に短期的な量子技術において、破壊的で避け難い特徴と見なされることが多い。
量子回路の非偏極雑音を利用して分類を行うことにより、敵に縛られるロバスト性を導出できることを示す。
これは、最も一般的な敵に対して使用できる最初の量子プロトコルである。
論文 参考訳(メタデータ) (2020-03-20T17:56:14Z) - Metrics and methods for robustness evaluation of neural networks with
generative models [0.07366405857677225]
近年、特にコンピュータビジョンにおいて、研究者たちは回転、明るさの変化、より高レベルな変化などの「自然な」あるいは「意味的な」摂動を発見した。
本稿では,分類器の頑健度を自然な逆数例に測定するための指標と,それらの評価方法を提案する。
論文 参考訳(メタデータ) (2020-03-04T10:58:59Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。