Adaptive Circuit Learning for Quantum Metrology
- URL: http://arxiv.org/abs/2010.08702v3
- Date: Tue, 16 Nov 2021 04:30:24 GMT
- Title: Adaptive Circuit Learning for Quantum Metrology
- Authors: Ziqi Ma, Pranav Gokhale, Tian-Xing Zheng, Sisi Zhou, Xiaofei Yu, Liang
Jiang, Peter Maurer, Frederic T. Chong
- Abstract summary: We explore whether a hybrid system of quantum sensors and quantum circuits can surpass the classical limit of sensing.
Our approach uses a variational algorithm that can learn a quantum sensing circuit based on platform-specific control capacity, noise, and signal distribution.
We demonstrate up to 13.12x SNR improvement over existing fixed protocol (GHZ), and 3.19x improvement over the classical limit on 15 qubits using IBM quantum computer.
- Score: 4.391936138589785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum sensing is an important application of emerging quantum technologies.
We explore whether a hybrid system of quantum sensors and quantum circuits can
surpass the classical limit of sensing. In particular, we use optimization
techniques to search for encoder and decoder circuits that scalably improve
sensitivity under given application and noise characteristics. Our approach
uses a variational algorithm that can learn a quantum sensing circuit based on
platform-specific control capacity, noise, and signal distribution. The quantum
circuit is composed of an encoder which prepares the optimal sensing state and
a decoder which gives an output distribution containing information of the
signal. We optimize the full circuit to maximize the Signal-to-Noise Ratio
(SNR). Furthermore, this learning algorithm can be run on real hardware
scalably by using the "parameter-shift" rule which enables gradient evaluation
on noisy quantum circuits, avoiding the exponential cost of quantum system
simulation. We demonstrate up to 13.12x SNR improvement over existing fixed
protocol (GHZ), and 3.19x Classical Fisher Information (CFI) improvement over
the classical limit on 15 qubits using IBM quantum computer. More notably, our
algorithm overcomes the decreasing performance of existing entanglement-based
protocols with increased system sizes.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Performance analysis of a filtering variational quantum algorithm [0.0]
Filtering Variational Quantum Eigensolver (F-VQE) is a variational hybrid quantum algorithm designed to solve optimization problems on existing quantum computers.
We employ Instantaneous Quantum Polynomial circuits as our parameterized quantum circuits.
Despite some observed positive signs, we conclude that significant development is necessary for a practical advantage with F-VQE.
arXiv Detail & Related papers (2024-04-13T08:50:44Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
We introduce a novel meta-optimization algorithm that trains a emphmeta-optimizer network to output parameters for the quantum circuit.
We show that we achieve a better quality minima in fewer circuit evaluations than existing gradient based algorithms on different datasets.
arXiv Detail & Related papers (2023-04-15T01:09:12Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Classical variational simulation of the Quantum Approximate Optimization
Algorithm [0.0]
We introduce a method to simulate layered quantum circuits consisting of parametrized gates.
A neural-network parametrization of the many-qubit wave function is used.
For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers.
arXiv Detail & Related papers (2020-09-03T15:55:27Z) - Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation [7.599675376503671]
Implementation of variational Quantum Machine Learning (QML) algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices has issues related to the high number of qubits needed and the noise associated with multi-qubit gates.
We propose a variational QML algorithm using a dressed quantum network to address these issues.
Unlike in most other existing QML algorithms, our quantum circuit consists only of single-qubit gates, making it robust against noise.
arXiv Detail & Related papers (2020-07-20T16:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.