論文の概要: Body models in humans, animals, and robots: mechanisms and plasticity
- arxiv url: http://arxiv.org/abs/2010.09325v2
- Date: Fri, 24 Sep 2021 15:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 22:43:02.077775
- Title: Body models in humans, animals, and robots: mechanisms and plasticity
- Title(参考訳): 人間、動物、ロボットの身体モデル:メカニズムと可塑性
- Authors: Matej Hoffmann
- Abstract要約: 人間と動物は、複数の感覚のモダリティからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
鍵となる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
ロボット工学において、ロボットのモデルとは、機械を制御するために必要なコンポーネントである。
- 参考スコア(独自算出の注目度): 2.855485723554975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans and animals excel in combining information from multiple sensory
modalities, controlling their complex bodies, adapting to growth, failures, or
using tools. These capabilities are also highly desirable in robots. They are
displayed by machines to some extent - yet, as is so often the case, the
artificial creatures are lagging behind. The key foundation is an internal
representation of the body that the agent - human, animal, or robot - has
developed. In the biological realm, evidence has been accumulated by diverse
disciplines giving rise to the concepts of body image, body schema, and others.
In robotics, a model of the robot is an indispensable component that enables to
control the machine. In this article I compare the character of body
representations in biology with their robotic counterparts and relate that to
the differences in performance that we observe. I put forth a number of axes
regarding the nature of such body models: fixed vs. plastic, amodal vs. modal,
explicit vs. implicit, serial vs. parallel, modular vs. holistic, and
centralized vs. distributed. An interesting trend emerges: on many of the axes,
there is a sequence from robot body models, over body image, body schema, to
the body representation in lower animals like the octopus. In some sense,
robots have a lot in common with Ian Waterman - "the man who lost his body" -
in that they rely on an explicit, veridical body model (body image taken to the
extreme) and lack any implicit, multimodal representation (like the body
schema) of their bodies. I will then detail how robots can inform the
biological sciences dealing with body representations and finally, I will study
which of the features of the "body in the brain" should be transferred to
robots, giving rise to more adaptive and resilient, self-calibrating machines.
- Abstract(参考訳): 人間と動物は、複数の感覚モーダルからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
これらの能力はロボットにも非常に望ましい。
それらはある程度機械によって表示されますが、多くの場合、人工生物は遅れています。
キーとなる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
生物学的領域では、ボディイメージやボディスキーマといった概念を生み出す様々な分野によって証拠が蓄積されている。
ロボット工学において、ロボットのモデルは機械を制御するために必要な要素である。
本稿では,生物学における身体表現の性格とロボット表現の性格を比較し,観察する性能の違いを関連づける。
固定型 vs. プラスチック,アモーダル vs. モダル,明示型 vs. 暗黙的 vs. シリアル vs. 並列,モジュール対. 全体論,集中型 vs. 分散などです。
興味深い傾向が現れる: 多くの軸には、ロボットの体モデル、体像、体図、そしてタコのような下層の動物の体表現のシーケンスがある。
ある意味では、ロボットはイアン・ウォーターマン(Ian Waterman)と多くの共通点がある。「体を失った男」は、明示的で検証可能な身体モデル(体像を極端に捉えた)に依存しており、身体の暗黙的かつマルチモーダルな表現(体図など)を欠いている。
次に、ロボットが身体表現を扱う生物科学にどのように情報を提供するかを説明し、最後に、ロボットに「脳の身体」のどの特徴を移すべきかを調べ、より適応的で弾力性のある自己管理機械を生み出します。
関連論文リスト
- GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning [18.64205729932939]
人間は自分の身体の感覚と動きの関係を学習することができる。
現在のロボットは、経験から人間によって記述されたネットワーク構造を学習することで身体を制御する。
論文 参考訳(メタデータ) (2024-09-10T11:19:13Z) - HUMOS: Human Motion Model Conditioned on Body Shape [54.20419874234214]
身体形状に基づく生成運動モデルを構築するための新しいアプローチを提案する。
非ペアデータを使ってこのモデルをトレーニングすることが可能であることを示す。
得られたモデルは、多種多様で、物理的に妥当で、動的に安定した人間の動きを生成する。
論文 参考訳(メタデータ) (2024-09-05T23:50:57Z) - Self Model for Embodied Intelligence: Modeling Full-Body Human Musculoskeletal System and Locomotion Control with Hierarchical Low-Dimensional Representation [22.925312305575183]
筋骨格モデル(MS-Human-700)を90個の体節,206個の関節,700個の筋腱ユニットで構築した。
低次元表現と階層的深部強化学習を用いた新しいアルゴリズムを開発し、最先端のフルボディ制御を実現する。
論文 参考訳(メタデータ) (2023-12-09T05:42:32Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Learning body models: from humans to humanoids [2.855485723554975]
人間と動物は、複数の感覚のモダリティからの情報を組み合わせて、複雑な体を制御し、成長、失敗、ツールの使用に適応する。
鍵となる基礎は、エージェント(人間、動物、ロボット)が開発してきた身体の内部表現である。
脳内での体モデルの操作のメカニズムは、ほとんど不明であり、出生後の経験からどのように構築されているかは、あまり分かっていない。
論文 参考訳(メタデータ) (2022-11-06T07:30:01Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
機能モデリングは、異なるマシンが提供する機能を意味的にモデル化するための有望なアプローチと考えられている。
この貢献は、製造から自律ロボットの分野への能力モデルの適用と拡張の仕方について考察する。
論文 参考訳(メタデータ) (2022-09-22T10:13:55Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Neuroscience-inspired perception-action in robotics: applying active
inference for state estimation, control and self-perception [2.1067139116005595]
神経科学の発見が、ロボット工学における現在の推定と制御アルゴリズムを改善する機会をいかに開放するかについて議論する。
本稿では,実体プラットフォーム上でのこのような計算モデルの開発から得られた実験と教訓を要約する。
論文 参考訳(メタデータ) (2021-05-10T10:59:38Z) - Sensorimotor representation learning for an "active self" in robots: A
model survey [10.649413494649293]
人間では、これらの能力は宇宙で私たちの身体を知覚する能力と関連していると考えられている。
本稿では,これらの能力の発達過程について概説する。
人工エージェントにおける自己感覚の出現を可能にする理論計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-25T16:31:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。