Interpretable Machine Learning -- A Brief History, State-of-the-Art and
Challenges
- URL: http://arxiv.org/abs/2010.09337v1
- Date: Mon, 19 Oct 2020 09:20:03 GMT
- Title: Interpretable Machine Learning -- A Brief History, State-of-the-Art and
Challenges
- Authors: Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl
- Abstract summary: We present a brief history of the field of interpretable machine learning (IML), give an overview of state-of-the-art interpretation methods, and discuss challenges.
As young as the field is, it has over 200 years old roots in regression modeling and rule-based machine learning, starting in the 1960s.
Many new IML methods have been proposed, many of them model-agnostic, but also interpretation techniques specific to deep learning and tree-based ensembles.
- Score: 0.8029049649310213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a brief history of the field of interpretable machine learning
(IML), give an overview of state-of-the-art interpretation methods, and discuss
challenges. Research in IML has boomed in recent years. As young as the field
is, it has over 200 years old roots in regression modeling and rule-based
machine learning, starting in the 1960s. Recently, many new IML methods have
been proposed, many of them model-agnostic, but also interpretation techniques
specific to deep learning and tree-based ensembles. IML methods either directly
analyze model components, study sensitivity to input perturbations, or analyze
local or global surrogate approximations of the ML model. The field approaches
a state of readiness and stability, with many methods not only proposed in
research, but also implemented in open-source software. But many important
challenges remain for IML, such as dealing with dependent features, causal
interpretation, and uncertainty estimation, which need to be resolved for its
successful application to scientific problems. A further challenge is a missing
rigorous definition of interpretability, which is accepted by the community. To
address the challenges and advance the field, we urge to recall our roots of
interpretable, data-driven modeling in statistics and (rule-based) ML, but also
to consider other areas such as sensitivity analysis, causal inference, and the
social sciences.
Related papers
- ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - Machine-assisted quantitizing designs: augmenting humanities and social sciences with artificial intelligence [0.0]
Large language models (LLMs) have been shown to present an unprecedented opportunity to scale up data analytics in the humanities and social sciences.
We build on mixed methods quantitizing and converting design principles, and feature analysis from linguistics, to transparently integrate human expertise and machine scalability.
The approach is discussed and demonstrated in over a dozen LLM-assisted case studies, covering 9 diverse languages, multiple disciplines and tasks.
arXiv Detail & Related papers (2023-09-24T14:21:50Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Interpretability and accessibility of machine learning in selected food
processing, agriculture and health applications [0.0]
Lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms.
New techniques are emerging to improve ML accessibility through automated model design.
This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems.
arXiv Detail & Related papers (2022-11-30T02:44:13Z) - Use and Misuse of Machine Learning in Anthropology [0.9786690381850356]
We will focus on the field of paleoanthropology, which seeks to understand the evolution of the human species based on biological and cultural evidence.
The aim of this paper is to provide a brief introduction to some of the ways in which ML has been applied within paleoanthropology.
We discuss a series of missteps, errors, and violations of correct protocols of ML methods that appear disconcertingly often within the accumulating body of anthropological literature.
arXiv Detail & Related papers (2022-09-06T20:32:24Z) - The worst of both worlds: A comparative analysis of errors in learning
from data in psychology and machine learning [17.336655978572583]
Recent concerns that machine learning (ML) may be facing a misdiagnosis and replication crisis suggest that some published claims in ML research cannot be taken at face value.
A deeper understanding of what concerns in research in supervised ML have in common with the replication crisis in experimental science can put the new concerns in perspective.
arXiv Detail & Related papers (2022-03-12T18:26:24Z) - Understanding the Usability Challenges of Machine Learning In
High-Stakes Decision Making [67.72855777115772]
Machine learning (ML) is being applied to a diverse and ever-growing set of domains.
In many cases, domain experts -- who often have no expertise in ML or data science -- are asked to use ML predictions to make high-stakes decisions.
We investigate the ML usability challenges present in the domain of child welfare screening through a series of collaborations with child welfare screeners.
arXiv Detail & Related papers (2021-03-02T22:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.