The efficacy of Neural Planning Metrics: A meta-analysis of PKL on
nuScenes
- URL: http://arxiv.org/abs/2010.09350v3
- Date: Tue, 13 Jul 2021 03:53:53 GMT
- Title: The efficacy of Neural Planning Metrics: A meta-analysis of PKL on
nuScenes
- Authors: Yiluan Guo, Holger Caesar, Oscar Beijbom, Jonah Philion, Sanja Fidler
- Abstract summary: A high-performing object detection system plays a crucial role in autonomous driving (AD)
The performance, typically evaluated in terms of mean Average Precision, does not take into account orientation and distance of the actors in the scene.
Recently, Philion et al. proposed a neural planning metric (PKL), based on the KL divergence of a planner's trajectory and the groundtruth route.
- Score: 77.83263286776938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A high-performing object detection system plays a crucial role in autonomous
driving (AD). The performance, typically evaluated in terms of mean Average
Precision, does not take into account orientation and distance of the actors in
the scene, which are important for the safe AD. It also ignores environmental
context. Recently, Philion et al. proposed a neural planning metric (PKL),
based on the KL divergence of a planner's trajectory and the groundtruth route,
to accommodate these requirements. In this paper, we use this neural planning
metric to score all submissions of the nuScenes detection challenge and analyze
the results. We find that while somewhat correlated with mAP, the PKL metric
shows different behavior to increased traffic density, ego velocity, road
curvature and intersections. Finally, we propose ideas to extend the neural
planning metric.
Related papers
- Generative Principal Component Regression via Variational Inference [2.4415762506639944]
One approach to designing appropriate manipulations is to target key features of predictive models.
We develop a novel objective based on supervised variational autoencoders (SVAEs) that enforces such information is represented in the latent space.
We show in simulations that gPCR dramatically improves target selection in manipulation as compared to standard PCR and SVAEs.
arXiv Detail & Related papers (2024-09-03T22:38:55Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - DESTINE: Dynamic Goal Queries with Temporal Transductive Alignment for
Trajectory Prediction [8.25651323214656]
We propose Dynamic goal quErieS with temporal Transductive alIgNmEnt (DESTINE) method.
We show that our method achieves state-of-the-art performance on various metrics.
arXiv Detail & Related papers (2023-10-11T12:41:32Z) - Evaluating Pedestrian Trajectory Prediction Methods with Respect to Autonomous Driving [0.9217021281095907]
In this paper, we assess the state of the art in pedestrian trajectory prediction within the context of generating single trajectories.
The evaluation is conducted on the widely-used ETH/UCY dataset where the Average Displacement Error (ADE) and the Final Displacement Error (FDE) are reported.
arXiv Detail & Related papers (2023-08-09T19:21:50Z) - Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in
nuScenes [38.43491956142818]
Planning task involves predicting the trajectory of the ego vehicle based on inputs from both internal intention and the external environment.
Most existing works evaluate their performance on the nuScenes dataset using the L2 error and collision rate between the predicted trajectories and the ground truth.
In this paper, we reevaluate these existing evaluation metrics and explore whether they accurately measure the superiority of different methods.
Our simple method achieves similar end-to-end planning performance on the nuScenes dataset with other perception-based methods, reducing the average L2 error by about 20%.
arXiv Detail & Related papers (2023-05-17T17:59:11Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
In applications of offline reinforcement learning to observational data, such as in healthcare or education, a general concern is that observed actions might be affected by unobserved factors.
Here we tackle this by considering off-policy evaluation in a partially observed Markov decision process (POMDP)
We extend the framework of proximal causal inference to our POMDP setting, providing a variety of settings where identification is made possible.
arXiv Detail & Related papers (2021-10-28T17:46:14Z) - Hierarchical Object-to-Zone Graph for Object Navigation [43.558927774552295]
In the unseen environment, when the target object is not in egocentric view, the agent may not be able to make wise decisions.
We propose a hierarchical object-to-zone (HOZ) graph to guide the agent in a coarse-to-fine manner.
Online-learning mechanism is also proposed to update HOZ according to the real-time observation in new environments.
arXiv Detail & Related papers (2021-09-05T13:02:17Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
We investigate whether the Wasserstein-1 distance between a policy's state visitation distribution and a target distribution can be utilized effectively for reinforcement learning tasks.
Our approach, termed Adversarial Intrinsic Motivation (AIM), estimates this Wasserstein-1 distance through its dual objective and uses it to compute a supplemental reward function.
arXiv Detail & Related papers (2021-05-27T17:51:34Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.