Synthesis of COVID-19 Chest X-rays using Unpaired Image-to-Image
Translation
- URL: http://arxiv.org/abs/2010.10266v1
- Date: Tue, 20 Oct 2020 13:37:40 GMT
- Title: Synthesis of COVID-19 Chest X-rays using Unpaired Image-to-Image
Translation
- Authors: Hasib Zunair and A. Ben Hamza
- Abstract summary: We build the first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high fidelity using an unsupervised domain adaptation approach.
We show considerable performance improvements on COVID-19 detection using various deep learning architectures.
Our publicly available benchmark dataset consists of 21,295 synthetic COVID-19 chest X-ray images.
- Score: 6.22964000148682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the lack of publicly available datasets of chest radiographs of
positive patients with Coronavirus disease 2019 (COVID-19), we build the
first-of-its-kind open dataset of synthetic COVID-19 chest X-ray images of high
fidelity using an unsupervised domain adaptation approach by leveraging class
conditioning and adversarial training. Our contributions are twofold. First, we
show considerable performance improvements on COVID-19 detection using various
deep learning architectures when employing synthetic images as additional
training set. Second, we show how our image synthesis method can serve as a
data anonymization tool by achieving comparable detection performance when
trained only on synthetic data. In addition, the proposed data generation
framework offers a viable solution to the COVID-19 detection in particular, and
to medical image classification tasks in general. Our publicly available
benchmark dataset consists of 21,295 synthetic COVID-19 chest X-ray images. The
insights gleaned from this dataset can be used for preventive actions in the
fight against the COVID-19 pandemic.
Related papers
- COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark
Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics [79.90346960083775]
We introduce COVIDx CXR-4, an expanded multi-institutional open-source benchmark dataset for chest X-ray image-based computer-aided COVID-19 diagnostics.
COVIDx CXR-4 expands significantly on the previous COVIDx CXR-3 dataset by increasing the total patient cohort size by greater than 2.66 times.
We provide extensive analysis on the diversity of the patient demographic, imaging metadata, and disease distributions to highlight potential dataset biases.
arXiv Detail & Related papers (2023-11-29T14:40:31Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Detection of COVID19 in Chest X-Ray Images Using Transfer Learning [0.0]
This paper investigates the concept of transfer learning using two of the most well-known VGGNet architectures, namely VGG-16 and VGG-19.
We generated two different datasets to evaluate the performance of the proposed system for the identification of positive Covid-19 instances in a multiclass and binary classification problems.
arXiv Detail & Related papers (2023-04-09T05:02:04Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - Improving COVID-19 CXR Detection with Synthetic Data Augmentation [0.0]
We train a deep learning model on publicly available COVID-19 image data and evaluate the model on local hospital chest X-ray data.
We are using a Generative Adversarial Network to generate synthetic X-ray images based on this data.
arXiv Detail & Related papers (2021-12-14T16:42:39Z) - Classification of COVID-19 on chest X-Ray images using Deep Learning
model with Histogram Equalization and Lungs Segmentation [1.6019444314820142]
We present our study based on deep learning architecture for detecting covid-19 infected lungs using chest X-rays.
Our novel approach combining well-known pre-processing techniques, feature extraction methods, and dataset balancing method, lead us to an outstanding rate of recognition of 98%.
arXiv Detail & Related papers (2021-12-05T05:04:38Z) - Learning from Pseudo Lesion: A Self-supervised Framework for COVID-19
Diagnosis [22.54540093657541]
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019.
In recent years, deep learning-based approaches have shown impressive performance in myriad image recognition tasks.
We proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis.
arXiv Detail & Related papers (2021-06-23T11:21:30Z) - Synthetic COVID-19 Chest X-ray Dataset for Computer-Aided Diagnosis [1.1501261942096426]
The dataset consists of 21,295 synthetic COVID-19 chest X-ray images to be used for computer-aided diagnosis.
These images, generated via an unsupervised domain adaptation approach, are of high quality.
arXiv Detail & Related papers (2021-06-17T18:39:15Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.