論文の概要: Safety Verification of Model Based Reinforcement Learning Controllers
- arxiv url: http://arxiv.org/abs/2010.10740v1
- Date: Wed, 21 Oct 2020 03:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 01:11:36.498342
- Title: Safety Verification of Model Based Reinforcement Learning Controllers
- Title(参考訳): モデルベース強化学習制御系の安全性検証
- Authors: Akshita Gupta, Inseok Hwang
- Abstract要約: 本稿では,モデルベースRLコントローラのリーチブル・セット解析を用いた新しい安全性検証フレームワークを提案する。
提案したフレームワークは、ニューラルネットワークを用いて表現されるモデルとコントローラを効率的に扱うことができる。
- 参考スコア(独自算出の注目度): 7.407039316561176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based reinforcement learning (RL) has emerged as a promising tool for
developing controllers for real world systems (e.g., robotics, autonomous
driving, etc.). However, real systems often have constraints imposed on their
state space which must be satisfied to ensure the safety of the system and its
environment. Developing a verification tool for RL algorithms is challenging
because the non-linear structure of neural networks impedes analytical
verification of such models or controllers. To this end, we present a novel
safety verification framework for model-based RL controllers using reachable
set analysis. The proposed frame-work can efficiently handle models and
controllers which are represented using neural networks. Additionally, if a
controller fails to satisfy the safety constraints in general, the proposed
framework can also be used to identify the subset of initial states from which
the controller can be safely executed.
- Abstract(参考訳): モデルベース強化学習(RL)は、現実のシステム(ロボット工学、自動運転など)のためのコントローラを開発するための有望なツールとして登場した。
しかし、実際のシステムは、システムとその環境の安全性を確保するために満たされなければならない状態空間に制約を課すことが多い。
ニューラルネットワークの非線形構造がモデルやコントローラの解析的検証を妨げるため、rlアルゴリズムの検証ツールの開発は困難である。
そこで本研究では,モデルベースRLコントローラのリーチブル・セット解析を用いた安全性検証フレームワークを提案する。
提案するフレームワークは,ニューラルネットワークを用いて表現されるモデルやコントローラを効率的に処理できる。
さらに、コントローラが一般に安全上の制約を満たすことができない場合、提案するフレームワークを使用して、コントローラが安全に実行できる初期状態のサブセットを特定することもできる。
関連論文リスト
- Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback [16.46487826869775]
本稿では,モデルベース制御とRLベース制御を統合し,ロバスト性を高めるニューラル内部モデル制御を提案する。
我々のフレームワークは、剛体力学にニュートン・オイラー方程式を適用することで予測モデルを合理化し、複雑な高次元非線形性を捉える必要がなくなる。
本研究では,四足歩行ロボットと四足歩行ロボットにおけるフレームワークの有効性を実証し,最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2024-11-20T07:07:42Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Controllability-Constrained Deep Network Models for Enhanced Control of
Dynamical Systems [4.948174943314265]
力学の知識を持たない力学系の制御は重要かつ困難な課題である。
ディープニューラルネットワーク(DNN)のような現代の機械学習アプローチは、制御入力と対応する状態観測出力から動的モデルの推定を可能にする。
制御性のあるデータから推定されるモデルを明確に拡張する制御理論法を提案する。
論文 参考訳(メタデータ) (2023-11-11T00:04:26Z) - A General Framework for Verification and Control of Dynamical Models via Certificate Synthesis [54.959571890098786]
システム仕様を符号化し、対応する証明書を定義するためのフレームワークを提供する。
コントローラと証明書を形式的に合成する自動化手法を提案する。
我々のアプローチは、ニューラルネットワークの柔軟性を利用して、制御のための安全な学習の幅広い分野に寄与する。
論文 参考訳(メタデータ) (2023-09-12T09:37:26Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Bridging Model-based Safety and Model-free Reinforcement Learning
through System Identification of Low Dimensional Linear Models [16.511440197186918]
モデルベース安全性とモデルフリー強化学習を組み合わせた新しい手法を提案する。
閉ループ系の力学を捉えるためには,低次元の力学モデルが十分であることを示す。
検出された線形モデルは、安全クリティカルな最適制御フレームワークによる保証を提供することができることを示す。
論文 参考訳(メタデータ) (2022-05-11T22:03:18Z) - Deep Reinforcement Learning with Shallow Controllers: An Experimental
Application to PID Tuning [3.9146761527401424]
実際の物理システム上での最先端RLアルゴリズムの実現における課題について述べる。
私たちのアプローチの核心は、トレーニング可能なRLポリシーとしてPIDコントローラを使用することです。
論文 参考訳(メタデータ) (2021-11-13T18:48:28Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
本研究では, 部分制御可能な線形力学系について, 基礎となる空間パターンを用いて検討する。
最適制御には無関係な状態変数を特徴付ける。
論文 参考訳(メタデータ) (2021-10-12T16:41:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
ダイナミクスモデルを使用して、ニューラルネットワークコントローラが安全に動作するために保持する必要がある出力プロパティを決定します。
ニューラルネットワークポリシの近似を効率的に生成するための適応的検証手法を開発した。
本手法は,航空機衝突回避ニューラルネットワークの確率的安全性を保証することができることを示す。
論文 参考訳(メタデータ) (2021-03-01T18:48:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。