論文の概要: Voronoi Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2010.11339v1
- Date: Wed, 21 Oct 2020 22:42:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 00:25:18.110888
- Title: Voronoi Convolutional Neural Networks
- Title(参考訳): ボロノイ畳み込みニューラルネットワーク
- Authors: Soroosh Yazdani and Andrea Tagliasacchi
- Abstract要約: サンプルをセル内の関数の平均として扱うことで、CNNで使用されるほとんどのレイヤの自然な等価性を見つけることができることを示す。
また,標準凸幾何アルゴリズムを用いて,これらのモデルに対して正確に推論を行うアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 22.793216189458402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this technical report, we investigate extending convolutional neural
networks to the setting where functions are not sampled in a grid pattern. We
show that by treating the samples as the average of a function within a cell,
we can find a natural equivalent of most layers used in CNN. We also present an
algorithm for running inference for these models exactly using standard convex
geometry algorithms.
- Abstract(参考訳): 本稿では,畳み込みニューラルネットワークをグリッドパターンで関数をサンプリングしないような環境に拡張する方法について検討する。
サンプルを細胞内の関数の平均として扱うことにより、cnnで使用されるほとんどの層に自然な等価性を見出すことができる。
また,標準凸幾何アルゴリズムを用いて,これらのモデルの推論を行うアルゴリズムを提案する。
関連論文リスト
- The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Clifford's Geometric Algebra and Convexity [54.01594785269913]
我々は,標準正規化損失のトレーニングにおいて,深部ReLUニューラルネットワークの最適重みがトレーニングサンプルのウェッジ積によって与えられることを示した。
トレーニング問題は、トレーニングデータセットの幾何学的構造をエンコードするウェッジ製品機能よりも凸最適化に還元される。
論文 参考訳(メタデータ) (2023-09-28T15:19:30Z) - A max-affine spline approximation of neural networks using the Legendre
transform of a convex-concave representation [0.3007949058551534]
本研究では,ニューラルネットワークをスプライン表現に変換する新しいアルゴリズムを提案する。
唯一の制約は、函数が有界で、よく定義された第二微分を持つことである。
また、各レイヤ上で独立してではなく、ネットワーク全体にわたって実行することもできる。
論文 参考訳(メタデータ) (2023-07-16T17:01:20Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - A Derivation of Feedforward Neural Network Gradients Using Fr\'echet
Calculus [0.0]
Fr'teche calculus を用いたフィードフォワードニューラルネットワークの勾配の導出を示す。
我々の分析が、畳み込みネットワークを含むより一般的なニューラルネットワークアーキテクチャにどのように一般化するかを示す。
論文 参考訳(メタデータ) (2022-09-27T08:14:00Z) - Lattice gauge equivariant convolutional neural networks [0.0]
汎用機械学習アプリケーションのためのLattice gauge equivariant Convolutional Neural Networks (L-CNNs)を提案する。
L-CNNは従来の畳み込みニューラルネットワークでは見つけられないゲージ不変量を学習・一般化できることを示した。
論文 参考訳(メタデータ) (2020-12-23T19:00:01Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - A function space analysis of finite neural networks with insights from
sampling theory [41.07083436560303]
非拡張活性化関数を持つ多層ネットワークが生成する関数空間は滑らかであることを示す。
入力が帯域制限の仮定の下では、新しいエラー境界を提供する。
前者の利点を示す決定論的一様とランダムサンプリングの両方を解析した。
論文 参考訳(メタデータ) (2020-04-15T10:25:18Z) - Linearly Constrained Neural Networks [0.5735035463793007]
ニューラルネットワークを用いた物理システムからベクトル場をモデリングおよび学習するための新しいアプローチを提案する。
これを実現するために、ターゲット関数は、ニューラルネットワークによってモデル化される下位のポテンシャル場の線形変換としてモデル化される。
論文 参考訳(メタデータ) (2020-02-05T01:27:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。