論文の概要: Motion Planner Augmented Reinforcement Learning for Robot Manipulation
in Obstructed Environments
- arxiv url: http://arxiv.org/abs/2010.11940v1
- Date: Thu, 22 Oct 2020 17:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 06:05:22.509691
- Title: Motion Planner Augmented Reinforcement Learning for Robot Manipulation
in Obstructed Environments
- Title(参考訳): 障害物環境におけるロボット操作のための運動プランナー強化学習
- Authors: Jun Yamada, Youngwoon Lee, Gautam Salhotra, Karl Pertsch, Max
Pflueger, Gaurav S. Sukhatme, Joseph J. Lim, Peter Englert
- Abstract要約: 本稿では,RLエージェントの動作空間を移動プランナの長期計画能力で拡張する動きプランナ拡張RL(MoPA-RL)を提案する。
動作の大きさに基づいて,動作を直接実行し,動作プランナを起動するアプローチを円滑に移行する。
実験により、MoPA-RLは学習効率を高め、より高速な探索をもたらし、より安全なポリシーをもたらすことが示されている。
- 参考スコア(独自算出の注目度): 22.20810568845499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) agents are able to learn contact-rich
manipulation tasks by maximizing a reward signal, but require large amounts of
experience, especially in environments with many obstacles that complicate
exploration. In contrast, motion planners use explicit models of the agent and
environment to plan collision-free paths to faraway goals, but suffer from
inaccurate models in tasks that require contacts with the environment. To
combine the benefits of both approaches, we propose motion planner augmented RL
(MoPA-RL) which augments the action space of an RL agent with the long-horizon
planning capabilities of motion planners. Based on the magnitude of the action,
our approach smoothly transitions between directly executing the action and
invoking a motion planner. We evaluate our approach on various simulated
manipulation tasks and compare it to alternative action spaces in terms of
learning efficiency and safety. The experiments demonstrate that MoPA-RL
increases learning efficiency, leads to a faster exploration, and results in
safer policies that avoid collisions with the environment. Videos and code are
available at https://clvrai.com/mopa-rl .
- Abstract(参考訳): 深層強化学習(rl)エージェントは、報奨信号を最大化することで、接触の多い操作タスクを学習できるが、特に探索を複雑にする多くの障害のある環境では、大量の経験を必要とする。
対照的に、運動プランナーはエージェントと環境の明示的なモデルを使用して衝突のない経路を遠くの目標まで計画するが、環境との接触を必要とするタスクにおいて不正確なモデルに悩まされる。
両手法の利点を組み合わせるために,RLエージェントの動作空間を移動プランナーの長期計画能力に拡張する動きプランナー拡張RL(MoPA-RL)を提案する。
動作の大きさに基づいて,動作を直接実行し,動作プランナを起動するアプローチを円滑に移行する。
様々な操作課題に対するアプローチを評価し,学習効率と安全性の観点から代替行動空間と比較した。
この実験は、MoPA-RLが学習効率を高め、より高速な探索をもたらし、環境との衝突を避ける安全な政策をもたらすことを示した。
ビデオとコードはhttps://clvrai.com/mopa-rl.comで入手できる。
関連論文リスト
- Diffusion-Reinforcement Learning Hierarchical Motion Planning in Adversarial Multi-agent Games [6.532258098619471]
部分的に観察可能なマルチエージェント追従ゲーム(PEG)における回避目標の動作計画タスクに焦点をあてる。
これらの追尾回避問題は、捜索・救助活動や監視ロボットなど、様々な応用に関係している。
環境データに応答するグローバルパスを計画するために,高レベル拡散モデルを統合する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-16T03:53:55Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Latent Exploration for Reinforcement Learning [87.42776741119653]
強化学習では、エージェントは環境を探索し、相互作用することでポリシーを学ぶ。
LATent TIme-Correlated Exploration (Lattice)を提案する。
論文 参考訳(メタデータ) (2023-05-31T17:40:43Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
組込みとエッジ優先化ポリシの両方を学習するために,データアグリゲーションを用いた時間符号化と模倣学習を用いたGNNベースのアプローチを提案する。
実験により, 提案手法は, 最先端の完全な動的計画アルゴリズムよりも, オンラインプランニングを著しく高速化できることが示された。
論文 参考訳(メタデータ) (2022-10-16T01:27:16Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - MAPPER: Multi-Agent Path Planning with Evolutionary Reinforcement
Learning in Mixed Dynamic Environments [30.407700996710023]
本稿では,進化的強化学習法(MAPPER)を用いた分散部分観測可能なマルチエージェントパス計画を提案する。
我々は、長距離ナビゲーションタスクを、グローバルプランナーの指導の下で、より簡単なサブタスクに分解する。
提案手法は,イメージベース表現を用いて動的障害物の挙動をモデル化し,均質性の仮定を伴わない混合動的環境におけるポリシーを訓練する。
論文 参考訳(メタデータ) (2020-07-30T20:14:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。