論文の概要: Word2vec Conjecture and A Limitative Result
- arxiv url: http://arxiv.org/abs/2010.12719v1
- Date: Sat, 24 Oct 2020 00:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 12:33:56.167191
- Title: Word2vec Conjecture and A Limitative Result
- Title(参考訳): Word2vec Conjectureと限界結果
- Authors: Falcon Z. Dai
- Abstract要約: 類似関係はベクトル空間で表現できるという予想を考察する。
我々はこのように表現できない関係のクラスを示す。
標数 0 の体上のベクトル空間(実数や複素数など)による意味論的関係の表現可能性に対する極限的な結果を確立する。
- 参考スコア(独自算出の注目度): 8.071506311915396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being inspired by the success of \texttt{word2vec}
\citep{mikolov2013distributed} in capturing analogies, we study the conjecture
that analogical relations can be represented by vector spaces. Unlike many
previous works that focus on the distributional semantic aspect of
\texttt{word2vec}, we study the purely \emph{representational} question: can
\emph{all} semantic word-word relations be represented by differences (or
directions) of vectors? We call this the word2vec conjecture and point out some
of its desirable implications. However, we will exhibit a class of relations
that cannot be represented in this way, thus falsifying the conjecture and
establishing a limitative result for the representability of semantic relations
by vector spaces over fields of characteristic 0, e.g., real or complex
numbers.
- Abstract(参考訳): 類似点の取得における \texttt{word2vec} \citep{mikolov2013distributed} の成功に触発されて、類似関係はベクトル空間で表現できるという予想を研究する。
textt{word2vec} の分布的意味的側面に焦点を当てた多くの先行研究と異なり、純粋に \emph{representational} 問題である: \emph{all} 意味的単語関係はベクトルの差(あるいは方向)によって表現できるのか?
これを word2vec 予想と呼び、その望ましい意味を指摘している。
しかし、この方法では表現できない関係のクラスを示し、したがって予想を偽造し、実数や複素数のような標数 0 の体上のベクトル空間による意味的関係の表現可能性の極限的な結果を確立する。
関連論文リスト
- Transitivity Recovering Decompositions: Interpretable and Robust
Fine-Grained Relationships [69.04014445666142]
Transitivity Recovering Decompositions (TRD) は、抽象的な創発的関係の解釈可能な等価性を識別するグラフ空間探索アルゴリズムである。
TRDは明らかにノイズの多い見方に対して堅牢であり、実証的な証拠もこの発見を支持している。
論文 参考訳(メタデータ) (2023-10-24T16:48:56Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
文埋め込みの可能性を明らかにするための新しいパラダイムとして,文埋め込み(Sentence Embedding, RSE)を提案する。
RSEは文関係のモデル化に有効で柔軟性があり、一連の最先端の埋め込み手法より優れている。
論文 参考訳(メタデータ) (2022-12-17T05:25:17Z) - Semantic Representations of Mathematical Expressions in a Continuous
Vector Space [0.0]
この研究は連続ベクトル空間における数学的表現を表現するためのアプローチを記述する。
我々は、視覚的に異なるが数学的に等価な表現に基づいて訓練されたシーケンス・ツー・シーケンス・アーキテクチャのエンコーダを用いて、ベクトル表現を生成する。
論文 参考訳(メタデータ) (2022-10-08T22:33:39Z) - Fuzzy Generalised Quantifiers for Natural Language in Categorical
Compositional Distributional Semantics [5.2424255020469595]
我々は、ザデの線に沿った量化子のファジィバージョンを考える。
このカテゴリは構成分布モデルの具体的なインスタンス化であることを示す。
論文 参考訳(メタデータ) (2021-09-23T09:15:15Z) - Word2Box: Learning Word Representation Using Box Embeddings [28.080105878687185]
単語のベクトル表現を学習することは、NLPにおける最も基本的なトピックの1つである。
我々のモデルであるWord2Boxは、単語表現の問題に対する領域ベースアプローチを採用し、単語を$n$次元長方形として表現する。
様々な単語類似性タスク、特にあまり一般的でない単語の性能向上を実証した。
論文 参考訳(メタデータ) (2021-06-28T01:17:11Z) - Pseudo-Euclidean Attract-Repel Embeddings for Undirected Graphs [73.0261182389643]
ドット積埋め込みはグラフをとり、2つのベクトル間のドット積がエッジの強さを与えるようなノードのベクトルを構成する。
ノードを擬ユークリッド空間に埋め込むことにより、推移性仮定を除去する。
Pseudo-Euclidean 埋め込みはネットワークを効率よく圧縮でき、近接する隣人の複数の概念をそれぞれ独自の解釈で解釈でき、既存のモデルに'スロットできる。
論文 参考訳(メタデータ) (2021-06-17T17:23:56Z) - Topology of Word Embeddings: Singularities Reflect Polysemy [68.8204255655161]
本稿では,単語の意味の実際の数とよく相関する,永続的ホモロジーに基づく多意味性のトポロジカル尺度を提案する。
本稿では,SemEval-2010における単語センスの誘導と曖昧さに対する単純なトポロジ的な解決法を提案する。
論文 参考訳(メタデータ) (2020-11-18T17:21:51Z) - RatE: Relation-Adaptive Translating Embedding for Knowledge Graph
Completion [51.64061146389754]
複素空間における新たな重み付き積の上に構築された関係適応変換関数を提案する。
次に、関係適応型翻訳埋め込み(RatE)アプローチを示し、各グラフを3倍にスコアする。
論文 参考訳(メタデータ) (2020-10-10T01:30:30Z) - Context-theoretic Semantics for Natural Language: an Algebraic Framework [0.0]
本稿では,単語,句,文がすべてベクトルとして表現される自然言語意味論の枠組みを提案する。
単語のベクトル表現は、体上の代数の要素とみなすことができる。
論文 参考訳(メタデータ) (2020-09-22T13:31:37Z) - Categorical Vector Space Semantics for Lambek Calculus with a Relevant
Modality [3.345437353879255]
我々はLambek Calculusの分類的分布意味論を関連性付きで開発する。
この圏を有限次元ベクトル空間と「量子化」関手を通して線型写像にインスタンス化する。
L*: パラサイト的ギャップを持つ句の導出を動機づける例に対して, カテゴリー的・具体的意味論的解釈を構築するために, モデルを適用した。
論文 参考訳(メタデータ) (2020-05-06T18:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。