論文の概要: Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional
Encoder-Decoder Network
- arxiv url: http://arxiv.org/abs/2010.12876v6
- Date: Wed, 13 Jul 2022 16:21:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 13:47:24.621211
- Title: Electromagnetic Source Imaging via a Data-Synthesis-Based Convolutional
Encoder-Decoder Network
- Title(参考訳): データ合成に基づく畳み込みエンコーダネットワークによる電磁源イメージング
- Authors: Gexin Huang, Jiawen Liang, Ke Liu, Chang Cai, ZhengHui Gu, Feifei Qi,
Yuan Qing Li, Zhu Liang Yu and Wei Wu
- Abstract要約: データ合成ソース・畳み込み型エンコーダ・デコーダネットワーク(rimiedNet)を提案する。
測定された脳波/脳波(E/MEG)信号から脳活動へのロバストマッピングを学習する。
様々なソース構成の下で、ソース信号を頑健に推定する、最先端のいくつかの手法より優れている。
- 参考スコア(独自算出の注目度): 9.621637334704772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electromagnetic source imaging (ESI) requires solving a highly ill-posed
inverse problem. To seek a unique solution, traditional ESI methods impose
various forms of priors that may not accurately reflect the actual source
properties, which may hinder their broad applications. To overcome this
limitation, in this paper a novel data-synthesized spatio-temporally
convolutional encoder-decoder network method termed DST-CedNet is proposed for
ESI. DST-CedNet recasts ESI as a machine learning problem, where discriminative
learning and latent-space representations are integrated in a convolutional
encoder-decoder network (CedNet) to learn a robust mapping from the measured
electroencephalography/magnetoencephalography (E/MEG) signals to the brain
activity. In particular, by incorporating prior knowledge regarding dynamical
brain activities, a novel data synthesis strategy is devised to generate
large-scale samples for effectively training CedNet. This stands in contrast to
traditional ESI methods where the prior information is often enforced via
constraints primarily aimed for mathematical convenience. Extensive numerical
experiments as well as analysis of a real MEG and Epilepsy EEG dataset
demonstrate that DST-CedNet outperforms several state-of-the-art ESI methods in
robustly estimating source signals under a variety of source configurations.
- Abstract(参考訳): 電磁光源イメージング(ESI)は、非常に不適切な逆問題を解決する必要がある。
ユニークな解を求めるために、従来のESI手法は、実際のソース特性を正確に反映しない様々な種類の事前を課し、広い応用を妨げる可能性がある。
本稿では,DST-CedNetと呼ばれるデータ合成時空間畳み込み型エンコーダ・デコーダネットワーク方式を提案する。
DST-CedNetは、ESIを機械学習問題とみなし、識別学習と潜在空間表現を畳み込みエンコーダネットワーク(CedNet)に統合し、測定された脳波/磁気脳波(E/MEG)信号から脳活動へのロバストマッピングを学ぶ。
特に、動的脳活動に関する事前知識を組み込んだ新しいデータ合成戦略を考案し、cednetを効果的に訓練するための大規模サンプルを生成する。
これは従来のESIの手法とは対照的であり、従来の情報は、主に数学的に便利な制約によって強制されることが多い。
広範囲な数値実験と実際のmegおよびてんかん脳波データセットの解析により、dst-cednetは様々なソース構成でソース信号のロバストな推定において、いくつかの最先端esi法よりも優れていることが示されている。
関連論文リスト
- Efficient representation learning of scintillation signal characteristics with spectrum-inspired temporal neural networks [1.124958340749622]
シンチレータを用いた核放射線検出器は、粒子・高エネルギー物理実験、核医学イメージング、産業・環境検出等に広く利用されている。
本稿では,従来の時系列解析に基づくシンチレーション信号のキャラクタリゼーションに適したネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-09T02:44:53Z) - Neural Speech and Audio Coding [19.437080345021105]
本稿では,ニューラル音声および音声符号化システムの領域におけるモデルベースおよびデータ駆動型アプローチの統合について検討する。
既存のコーデックの出力を後処理するように設計されたニューラルネットワークベースの信号エンハンサーを導入している。
本稿では、精神音響学的に校正された損失関数を用いて、エンドツーエンドのニューラルオーディオコーデックを訓練する方法について検討する。
論文 参考訳(メタデータ) (2024-08-13T15:13:21Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
モジュール化検出器のタイミング解析のためのディープラーニングに基づく新しい手法を提案する。
本稿では,提案手法が求める最適関数の存在を数学的に証明し,モデルのトレーニングと校正のための体系的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T09:16:31Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
我々は、スマートグリッドに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発した。
このフレームワークは、オートエンコーダ、リカレントニューラルネットワーク(RNN)とLong-Short-Term-Memory層、Deep Neural Network(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2020-09-25T17:48:43Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。