Introduction to AI Planning
- URL: http://arxiv.org/abs/2412.11642v1
- Date: Mon, 16 Dec 2024 10:38:04 GMT
- Title: Introduction to AI Planning
- Authors: Marco Aiello, Ilche Georgievski,
- Abstract summary: The notes begin by introducing the state model and move on to exploring classical planning.
The most extensive section is dedicated to Hierarchical Task Network (HTN) planning.
The lecture notes end with a bonus chapter on the Planning Domain Definition (PDDL) Language.
- Score: 0.0
- License:
- Abstract: These are notes for lectures presented at the University of Stuttgart that provide an introduction to key concepts and techniques in AI Planning. Artificial Intelligence Planning, also known as Automated Planning, emerged somewhere in 1966 from the need to give autonomy to a wheeled robot. Since then, it has evolved into a flourishing research and development discipline, often associated with scheduling. Over the decades, various approaches to planning have been developed with characteristics that make them appropriate for specific tasks and applications. Most approaches represent the world as a state within a state transition system; then the planning problem becomes that of searching a path in the state space from the current state to one which satisfies the goals of the user. The notes begin by introducing the state model and move on to exploring classical planning, the foundational form of planning, and present fundamental algorithms for solving such problems. Subsequently, we examine planning as a constraint satisfaction problem, outlining the mapping process and describing an approach to solve such problems. The most extensive section is dedicated to Hierarchical Task Network (HTN) planning, one of the most widely used and powerful planning techniques in the field. The lecture notes end with a bonus chapter on the Planning Domain Definition (PDDL) Language, the de facto standard syntax for representing non-hierarchical planning problems.
Related papers
- Towards High-Level Modelling in Automated Planning [0.36373653017571106]
Unified-Planning is a Python library offering high-level API to specify planning problems and to invoke automated planners.
In this paper, we present an extension of the UP library aimed at enhancing its expressivity for high-level problem modelling.
arXiv Detail & Related papers (2024-12-09T09:01:13Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - A Planning Ontology to Represent and Exploit Planning Knowledge for Performance Efficiency [6.87593454486392]
We consider the problem of automated planning, where the objective is to find a sequence of actions that will move an agent from an initial state of the world to a desired goal state.
We hypothesize that given a large number of available planners and diverse planning domains; they carry essential information that can be leveraged to identify suitable planners and improve their performance for a domain.
arXiv Detail & Related papers (2023-07-25T14:51:07Z) - PlaSma: Making Small Language Models Better Procedural Knowledge Models for (Counterfactual) Planning [77.03847056008598]
PlaSma is a novel two-pronged approach to endow small language models with procedural knowledge and (constrained) language planning capabilities.
We develop symbolic procedural knowledge distillation to enhance the commonsense knowledge in small language models and an inference-time algorithm to facilitate more structured and accurate reasoning.
arXiv Detail & Related papers (2023-05-31T00:55:40Z) - Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning [45.51792981370957]
We investigate the applicability of a smaller class of large language models (LLMs) in robotic task planning by learning to decompose tasks into subgoal specifications for a planner to execute sequentially.
Our method grounds the input of the LLM on the domain that is represented as a scene graph, enabling it to translate human requests into executable robot plans.
Our findings suggest that the knowledge stored in an LLM can be effectively grounded to perform long-horizon task planning, demonstrating the promising potential for the future application of neuro-symbolic planning methods in robotics.
arXiv Detail & Related papers (2023-05-12T18:14:32Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Classical Planning in Deep Latent Space [33.06766829037679]
Latplan is an unsupervised architecture combining deep learning and classical planning.
Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution.
arXiv Detail & Related papers (2021-06-30T21:31:21Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
We propose a novel framework and algorithm for hierarchical planning based on the principle of delegation.
We show this planning approach is experimentally very competitive to classic planning and reinforcement learning techniques on a variety of domains.
arXiv Detail & Related papers (2020-10-25T04:36:20Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z) - STRIPS Action Discovery [67.73368413278631]
Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing.
We propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown.
arXiv Detail & Related papers (2020-01-30T17:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.