論文の概要: Statistical optimality and stability of tangent transform algorithms in
logit models
- arxiv url: http://arxiv.org/abs/2010.13039v1
- Date: Sun, 25 Oct 2020 05:15:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 05:06:08.048001
- Title: Statistical optimality and stability of tangent transform algorithms in
logit models
- Title(参考訳): ロジットモデルにおける接変換アルゴリズムの統計的最適性と安定性
- Authors: Indrajit Ghosh, Anirban Bhattacharya and Debdeep Pati
- Abstract要約: 我々は,データ生成過程の条件として,ロジカルオプティマによって引き起こされるリスクに対して,非漸近上界を導出する。
特に,データ生成過程の仮定なしにアルゴリズムの局所的変動を確立する。
我々は,大域収束が得られる半直交設計を含む特別な場合について検討する。
- 参考スコア(独自算出の注目度): 6.9827388859232045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A systematic approach to finding variational approximation in an otherwise
intractable non-conjugate model is to exploit the general principle of convex
duality by minorizing the marginal likelihood that renders the problem
tractable. While such approaches are popular in the context of variational
inference in non-conjugate Bayesian models, theoretical guarantees on
statistical optimality and algorithmic convergence are lacking. Focusing on
logistic regression models, we provide mild conditions on the data generating
process to derive non-asymptotic upper bounds to the risk incurred by the
variational optima. We demonstrate that these assumptions can be completely
relaxed if one considers a slight variation of the algorithm by raising the
likelihood to a fractional power. Next, we utilize the theory of dynamical
systems to provide convergence guarantees for such algorithms in logistic and
multinomial logit regression. In particular, we establish local asymptotic
stability of the algorithm without any assumptions on the data-generating
process. We explore a special case involving a semi-orthogonal design under
which a global convergence is obtained. The theory is further illustrated using
several numerical studies.
- Abstract(参考訳): その他の難解な非共役モデルにおける変分近似を見つけるための体系的なアプローチは、問題を抽出可能な限界確率を小さくすることで凸双対性の一般的な原理を利用することである。
そのようなアプローチは非共役ベイズモデルにおける変分推論の文脈で人気があるが、統計的最適性やアルゴリズム収束に関する理論的保証は欠如している。
また,ロジスティック回帰モデルに着目し,データ生成過程の緩やかな条件により,変分最適によって引き起こされるリスクに対して,漸近的でない上限を導出する。
これらの仮定は、その確率を分数パワーに上げることによって、アルゴリズムのわずかな変動を考えると完全に緩和できることを示す。
次に、力学系の理論を用いて、ロジスティックおよび多項ロジット回帰におけるそのようなアルゴリズムの収束保証を提供する。
特に,データ生成過程の仮定なしにアルゴリズムの局所的な漸近安定性を確立する。
我々は,大域収束が得られた半直交設計を含む特別な場合を考察する。
この理論はいくつかの数値的研究を用いてさらに説明されている。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - kNN Algorithm for Conditional Mean and Variance Estimation with
Automated Uncertainty Quantification and Variable Selection [8.429136647141487]
我々は従来の非パラメトリックkNNモデルのスケーラビリティと適応性を相乗化するkNNベースの回帰手法を提案する。
本手法は,確率応答変数の条件平均と分散を正確に推定することに焦点を当てる。
2つのケーススタディで示されているように、特に生体医学的応用において顕著である。
論文 参考訳(メタデータ) (2024-02-02T18:54:18Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization [29.24821214671497]
機械学習と統計モデルのトレーニングは、しばしばデータ駆動型リスク基準の最適化を伴う。
ベイズ的非パラメトリック(ディリクレ過程)理論と、スムーズなあいまいさ-逆選好の最近の決定論的モデルを組み合わせた、新しいロバストな基準を提案する。
実用的な実装として、よく知られたディリクレプロセスの表現に基づいて、評価基準の抽出可能な近似を提案し、研究する。
論文 参考訳(メタデータ) (2024-01-28T21:19:15Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
二重確率点過程は、ランダム強度関数の実現を前提とした不均一過程として空間領域上の事象の発生をモデル化する。
既存の二重確率空間モデルの実装は、計算的に要求され、しばしば理論的な保証が制限され、または制限的な仮定に依存している。
論文 参考訳(メタデータ) (2023-06-11T19:48:39Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
後補助正規化(PAR)は,モデル構造に関係なく,密度推定器の学習に適用可能である。
単一のニューラルネットワークを用いて逆KL項と相互情報項の両方を推定するPARの統一推定方法を提供する。
論文 参考訳(メタデータ) (2021-02-15T16:59:30Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Distributed Stochastic Nonconvex Optimization and Learning based on
Successive Convex Approximation [26.11677569331688]
本稿では,ネットワーク内のエージェントの総和の分散アルゴリズム最小化のための新しいフレームワークを提案する。
提案手法は分散ニューラルネットワークに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-04-30T15:36:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。