Topologically protected strong coupling and entanglement between distant
quantum emitters
- URL: http://arxiv.org/abs/2010.13075v1
- Date: Sun, 25 Oct 2020 09:50:48 GMT
- Title: Topologically protected strong coupling and entanglement between distant
quantum emitters
- Authors: Yujing Wang, Jun Ren, Weixuan Zhang, Lu He, and Xiangdong Zhang
- Abstract summary: The duration of quantum beats for such entanglement can reach several orders longer than that for the entanglement in a conventional photonic cavity.
We numerically prove that the topologically protected entanglement between two QEs can also be realized.
- Score: 8.994265027295684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realization of robust strong coupling and entanglement between distant
quantum emitters (QEs) is very important for scalable quantum information
processes. However, it is hard to achieve it based on conventional systems.
Here, we propose theoretically and demonstrate numerically a scheme to realize
such strong coupling and entanglement. Our scheme is based on the photonic
crystal platform with topologically protected edge state and zero-dimensional
topological corner cavities. When the QEs are put into topological cavities,
the strong coupling between them can be fulfilled with the assistance of the
topologically protected interface state. Such a strong coupling can maintain a
very long distance and be robust against various defects. Especially, we
numerically prove that the topologically protected entanglement between two QEs
can also be realized. Moreover, the duration of quantum beats for such
entanglement can reach several orders longer than that for the entanglement in
a conventional photonic cavity, making it be very beneficial for a scalable
quantum information process.
Related papers
- Topologically protected entanglement switching around exceptional points [6.457956872856072]
We propose an effective scheme to realize robust operation of quantum entanglement states by designing quadruple degeneracy exceptional points.
Our work opens up a new way for the application of non-Hermitian physics in the field of quantum information.
arXiv Detail & Related papers (2023-10-23T09:06:37Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Observation of higher-order topological states on a quantum computer [2.498439320062193]
We develop an approach that places NISQ hardware as a suitable platform for simulating multi-dimensional condensed matter systems.
By fully exploiting the exponentially large Hilbert space of a quantum chain, we encoded a high-dimensional model in terms of non-local many-body interactions.
We demonstrate the power of our approach by realizing, on IBM transmon-based quantum computers, higher-order topological states in up to four dimensions.
arXiv Detail & Related papers (2023-03-03T19:00:17Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - Quantum topology in the ultrastrong coupling regime [0.0]
We show how the delicate interplay between ultrastrong coupling and topological states manifests in a one-dimensional array.
We uncover unusual topological edge states, we introduce a flavour of topological state which we call an anti-edge state, and we reveal the remarkable geometric-dependent renormalizations of the quantum vaccum.
arXiv Detail & Related papers (2022-07-11T15:35:45Z) - Quantum control methods for robust entanglement of trapped ions [0.0]
A major obstacle in the way of practical quantum computing is achieving scalable and robust high-fidelity entangling gates.
quantum control has become an essential tool, as it can make the entangling interaction resilient to sources of noise.
arXiv Detail & Related papers (2022-06-13T11:48:05Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.