Malicious Requests Detection with Improved Bidirectional Long Short-term
Memory Neural Networks
- URL: http://arxiv.org/abs/2010.13285v4
- Date: Thu, 12 Nov 2020 02:08:36 GMT
- Title: Malicious Requests Detection with Improved Bidirectional Long Short-term
Memory Neural Networks
- Authors: Wenhao Li, Bincheng Zhang, Jiajie Zhang
- Abstract summary: We formulate the problem of detecting malicious requests as a temporal sequence classification problem.
We propose a novel deep learning model namely Convolutional Neural Network-Bidirectional Long Short-term Memory-Convolutional Neural Network (CNN-BiLSTM-CNN)
Experimental results on HTTP dataset CSIC 2010 have demonstrated the effectiveness of the proposed method.
- Score: 8.379440129896548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting and intercepting malicious requests are one of the most widely used
ways against attacks in the network security. Most existing detecting
approaches, including matching blacklist characters and machine learning
algorithms have all shown to be vulnerable to sophisticated attacks. To address
the above issues, a more general and rigorous detection method is required. In
this paper, we formulate the problem of detecting malicious requests as a
temporal sequence classification problem, and propose a novel deep learning
model namely Convolutional Neural Network-Bidirectional Long Short-term
Memory-Convolutional Neural Network (CNN-BiLSTM-CNN). By connecting the shadow
and deep feature maps of the convolutional layers, the malicious feature
extracting ability is improved on more detailed functionality. Experimental
results on HTTP dataset CSIC 2010 have demonstrated the effectiveness of the
proposed method when compared with the state-of-the-arts.
Related papers
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
arXiv Detail & Related papers (2024-10-29T09:09:08Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Intrusion Detection: A Deep Learning Approach [0.0]
The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and a Support Vector Machine (SVM) classification function.
The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
arXiv Detail & Related papers (2023-06-13T07:58:40Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
arXiv Detail & Related papers (2020-09-18T18:32:24Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
We show that a simple iterative mask discovery method can achieve state-of-the-art compression of very deep networks.
Our algorithm represents a hybrid approach between single shot network pruning methods and Lottery-Ticket type approaches.
arXiv Detail & Related papers (2020-06-28T23:09:27Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Pelican: A Deep Residual Network for Network Intrusion Detection [7.562843347215287]
We propose a deep neural network, Pelican, that is built upon specially-designed residual blocks.
Pelican can achieve a high attack detection performance while keeping a much low false alarm rate.
arXiv Detail & Related papers (2020-01-19T05:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.