論文の概要: Physics-Based Deep Learning for Fiber-Optic Communication Systems
- arxiv url: http://arxiv.org/abs/2010.14258v1
- Date: Tue, 27 Oct 2020 12:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:40:20.172384
- Title: Physics-Based Deep Learning for Fiber-Optic Communication Systems
- Title(参考訳): ファイバオプティカル通信システムのための物理に基づく深層学習
- Authors: Christian H\"ager and Henry D. Pfister
- Abstract要約: 非線形シュリンガー方程式(NLSE)により制御される光ファイバー通信システムのための新しい機械学習手法を提案する。
本研究の主目的は,NLSEの数値解法として一般的なスプリットステップ法(SSM)が,深い多層ニューラルネットワークと同じ機能を有することである。
我々は、SSMをパラメータ化し、ニューラルネットワークの重み行列と同様、線形ステップを一般線形関数として見ることにより、この接続を利用する。
- 参考スコア(独自算出の注目度): 10.630021520220653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new machine-learning approach for fiber-optic communication
systems whose signal propagation is governed by the nonlinear Schr\"odinger
equation (NLSE). Our main observation is that the popular split-step method
(SSM) for numerically solving the NLSE has essentially the same functional form
as a deep multi-layer neural network; in both cases, one alternates linear
steps and pointwise nonlinearities. We exploit this connection by
parameterizing the SSM and viewing the linear steps as general linear
functions, similar to the weight matrices in a neural network. The resulting
physics-based machine-learning model has several advantages over "black-box"
function approximators. For example, it allows us to examine and interpret the
learned solutions in order to understand why they perform well. As an
application, low-complexity nonlinear equalization is considered, where the
task is to efficiently invert the NLSE. This is commonly referred to as digital
backpropagation (DBP). Rather than employing neural networks, the proposed
algorithm, dubbed learned DBP (LDBP), uses the physics-based model with
trainable filters in each step and its complexity is reduced by progressively
pruning filter taps during gradient descent. Our main finding is that the
filters can be pruned to remarkably short lengths-as few as 3 taps/step-without
sacrificing performance. As a result, the complexity can be reduced by orders
of magnitude in comparison to prior work. By inspecting the filter responses,
an additional theoretical justification for the learned parameter
configurations is provided. Our work illustrates that combining data-driven
optimization with existing domain knowledge can generate new insights into old
communications problems.
- Abstract(参考訳): We propose a new machine-learning approach for fiber-optic communication systems whose signal propagation is governed by the nonlinear Schr\"odinger equation (NLSE). Our main observation is that the popular split-step method (SSM) for numerically solving the NLSE has essentially the same functional form as a deep multi-layer neural network; in both cases, one alternates linear steps and pointwise nonlinearities. We exploit this connection by parameterizing the SSM and viewing the linear steps as general linear functions, similar to the weight matrices in a neural network. The resulting physics-based machine-learning model has several advantages over "black-box" function approximators.
例えば、なぜうまく機能するのかを理解するために、学習したソリューションを調べ、解釈することができる。
応用として、NLSEを効率よく反転させるタスクである低複素非線形等化を考える。
これをデジタルバックプロパゲーション (digital backpropagation, dbp) と呼ぶ。
ニューラルネットワークを採用するのではなく、学習DBP(LDBP)と呼ばれるアルゴリズムでは、各ステップでトレーニング可能なフィルタを持つ物理モデルを使用しており、勾配降下中にフィルタタップを段階的にプルーニングすることで複雑さを低減している。
私たちのおもな発見は、フィルタを非常に短い長さにプルーピングできるということです。
結果として、複雑さは以前の作業と比べて桁違いに小さくすることができる。
フィルタ応答を検査することにより、学習パラメータ構成に対する追加の理論的正当性が提供される。
我々の研究は、データ駆動最適化と既存のドメイン知識を組み合わせることで、古いコミュニケーション問題に対する新たな洞察を生み出すことができることを示している。
関連論文リスト
- Nonlinear Schrödinger Network [0.8249694498830558]
ディープニューラルネットワーク(DNN)は、大規模データセットから複雑な非線形マッピングを学習することで、様々な分野において例外的なパフォーマンスを実現している。
これらの問題に対処するため、物理学とAIを統合するハイブリッドアプローチが注目されている。
本稿では,非線形シュリンガーネットワーク(Nonlinear Schr"odinger Network)と呼ばれる物理に基づく新しいAIモデルを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:00Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - AMS-Net: Adaptive Multiscale Sparse Neural Network with Interpretable
Basis Expansion for Multiphase Flow Problems [8.991619150027267]
本研究では、物理過程の学習に応用可能な適応スパース学習アルゴリズムを提案し、大きなスナップショット空間を与えられた解のスパース表現を得る。
基本関数の情報は損失関数に組み込まれており、複数の時間ステップにおけるダウンスケール縮小次数解と参照解との差を最小限に抑える。
複雑なアプリケーションにおける提案手法の有効性と解釈性を示すため, 2相多相流問題に対してより数値的な実験を行った。
論文 参考訳(メタデータ) (2022-07-24T13:12:43Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics [10.335960060544904]
深層学習と物理を組み合わせる物理インフォームドニューラルネットワーク (PINN) について, 非線形シュリンガー方程式を解くために検討した。
PINNは、効果的な偏微分方程式解法であるだけでなく、光ファイバーにおける科学計算と自動モデリングの進歩にも期待できる技術である。
論文 参考訳(メタデータ) (2021-09-01T12:19:32Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
提案手法を用いて,パラメータの相対的精度を推定できることを示す。
深い学習を伴う偏微分方程式の逆問題における自然な枠組みを提供する。
論文 参考訳(メタデータ) (2021-07-19T02:54:37Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - A Neural Network Approach for Online Nonlinear Neyman-Pearson
Classification [3.6144103736375857]
論文の中では,オンラインと非線形の両方で初となる新しいNeyman-Pearson(NP)分類器を提案する。
提案する分類器は、オンライン方式でバイナリラベル付きデータストリーム上で動作し、ユーザが指定し、制御可能な偽陽性率の検出能力を最大化する。
提案アルゴリズムは大規模データアプリケーションに適しており,実時間処理による偽陽性率制御性を実現している。
論文 参考訳(メタデータ) (2020-06-14T20:00:25Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
我々は、計算複雑性を低減し、ニューラルネットワーク処理を高速化する畳み込みニューラルネットワーク変換を考える。
畳み込みニューラルネットワーク(CNN)の使用は、計算的に要求が多すぎるにもかかわらず、画像認識の標準的なアプローチである。
論文 参考訳(メタデータ) (2020-02-18T17:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。