論文の概要: Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics
- arxiv url: http://arxiv.org/abs/2109.00526v1
- Date: Wed, 1 Sep 2021 12:19:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-03 13:45:31.828602
- Title: Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics
- Title(参考訳): ファイバ光学における非線形ダイナミクスのための物理インフォームドニューラルネットワーク
- Authors: Xiaotian Jiang, Danshi Wang, Qirui Fan, Min Zhang, Chao Lu, and Alan
Pak Tao Lau
- Abstract要約: 深層学習と物理を組み合わせる物理インフォームドニューラルネットワーク (PINN) について, 非線形シュリンガー方程式を解くために検討した。
PINNは、効果的な偏微分方程式解法であるだけでなく、光ファイバーにおける科学計算と自動モデリングの進歩にも期待できる技術である。
- 参考スコア(独自算出の注目度): 10.335960060544904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A physics-informed neural network (PINN) that combines deep learning with
physics is studied to solve the nonlinear Schr\"odinger equation for learning
nonlinear dynamics in fiber optics. We carry out a systematic investigation and
comprehensive verification on PINN for multiple physical effects in optical
fibers, including dispersion, self-phase modulation, and higher-order nonlinear
effects. Moreover, both special case (soliton propagation) and general case
(multi-pulse propagation) are investigated and realized with PINN. In the
previous studies, the PINN was mainly effective for single scenario. To
overcome this problem, the physical parameters (pulse peak power and amplitudes
of sub-pulses) are hereby embedded as additional input parameter controllers,
which allow PINN to learn the physical constraints of different scenarios and
perform good generalizability. Furthermore, PINN exhibits better performance
than the data-driven neural network using much less data, and its computational
complexity (in terms of number of multiplications) is much lower than that of
the split-step Fourier method. The results report here show that the PINN is
not only an effective partial differential equation solver, but also a
prospective technique to advance the scientific computing and automatic
modeling in fiber optics.
- Abstract(参考訳): ファイバー光学系の非線形ダイナミクスを学習するための非線形schr\"odinger方程式を解くために、深層学習と物理を結合した物理に変形したニューラルネットワーク (pinn) が研究されている。
我々は、分散、自己位相変調、高次非線形効果を含む光ファイバーにおける多重物理効果に対するPINNの系統的および包括的検証を行う。
さらに, PINNを用いて, 特殊ケース (ソリトン伝搬) と一般ケース (マルチパルス伝搬) の両方を検討, 実現した。
前回の研究では、PINNは主に単一シナリオに有効であった。
この問題を解決するために、物理パラメータ(パルスピークパワーとサブパルスの振幅)は追加の入力パラメータコントローラとして組み込まれ、PINNは異なるシナリオの物理的制約を学習し、優れた一般化性を実現する。
さらに、pinnはデータ駆動型ニューラルネットワークよりもはるかに少ないデータを使用するよりも優れた性能を示し、その計算複雑性(乗算数の観点から)は分割ステップフーリエ法よりもずっと低い。
本報告は,PINNが有効な偏微分方程式解法であるだけでなく,光ファイバーにおける科学計算と自動モデリングを推し進めるための予測手法であることを示す。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Spectral Informed Neural Network: An Efficient and Low-Memory PINN [3.8534287291074354]
本稿では、微分演算子を乗法で置き換えるスペクトルベースニューラルネットワークを提案する。
PINNと比較して、我々のアプローチはメモリの削減とトレーニング時間の短縮を必要とする。
我々は、スペクトル情報を用いてネットワークを訓練する2つの戦略を提供する。
論文 参考訳(メタデータ) (2024-08-29T10:21:00Z) - Nonlinear Schrödinger Network [0.8249694498830558]
ディープニューラルネットワーク(DNN)は、大規模データセットから複雑な非線形マッピングを学習することで、様々な分野において例外的なパフォーマンスを実現している。
これらの問題に対処するため、物理学とAIを統合するハイブリッドアプローチが注目されている。
本稿では,非線形シュリンガーネットワーク(Nonlinear Schr"odinger Network)と呼ばれる物理に基づく新しいAIモデルを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:00Z) - A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High
Level Accuracy and Efficiency [0.20391237204597357]
物理インフォームドニューラルネットワーク(PINN)は様々な分野に広く応用されている。
本稿では,新しい次元拡張物理インフォームドニューラルネットワーク(DaPINN)を提案する。
DaPINNは同時に、PINNの精度と効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-10-19T15:54:37Z) - Physics-aware Differentiable Discrete Codesign for Diffractive Optical
Neural Networks [12.952987240366781]
本研究は,Diffractive Optical Neural Network (DONN) の効率的なトレーニングを可能にする,新しいデバイス間ハードウェア・ソフトウェア符号フレームワークを提案する。
Gumbel-Softmaxは、現実世界のデバイスパラメータからDONNの前方関数への微分可能な離散マッピングを可能にするために使用される。
その結果,提案手法は従来の量子化法に比べて大きな利点があることがわかった。
論文 参考訳(メタデータ) (2022-09-28T17:13:28Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - On the eigenvector bias of Fourier feature networks: From regression to
solving multi-scale PDEs with physics-informed neural networks [0.0]
ニューラルネットワーク(PINN)は、目標関数を近似する場合には、高周波またはマルチスケールの特徴を示す。
マルチスケールなランダムな観測機能を備えた新しいアーキテクチャを構築し、そのような座標埋め込み層が堅牢で正確なPINNモデルにどのように結びつくかを正当化します。
論文 参考訳(メタデータ) (2020-12-18T04:19:30Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。