Deterministic multi-mode gates on a scalable photonic quantum computing
platform
- URL: http://arxiv.org/abs/2010.14422v2
- Date: Sat, 28 Aug 2021 15:02:50 GMT
- Title: Deterministic multi-mode gates on a scalable photonic quantum computing
platform
- Authors: Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S.
Neergaard-Nielsen, and Ulrik L. Andersen
- Abstract summary: We show a small quantum circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode input state.
On this platform, fault-tolerant universal quantum computing is possible if the cluster state entanglement is improved.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing can be realized with numerous different hardware platforms
and computational protocols. A highly promising approach to foster scalability
is to apply a photonic platform combined with a measurement-induced quantum
information processing protocol where gate operations are realized through
optical measurements on a multipartite entangled quantum state -- a so-called
cluster state. Heretofore, a few quantum gates on non-universal or non-scalable
cluster states have been, but a full set of gates for universal scalable
quantum computing has not been realized. We propose and demonstrate the
deterministic implementation of a multi-mode set of measurement-induced quantum
gates in a large two-dimensional (2D) optical cluster state using
phase-controlled continuous variable quadrature measurements. Each gate is
simply programmed into the phases of the high-efficiency quadrature
measurements which execute the transformations by teleportation through the
cluster state. Using these programmable gates, we demonstrate a small quantum
circuit consisting of 10 single-mode gates and 2 two-mode gates on a three-mode
input state. On this platform, fault-tolerant universal quantum computing is
possible if the cluster state entanglement is improved and a supply of
Gottesman-Kitaev-Preskill qubits is available. Moreover, it operates at the
telecom wavelength and is therefore network connectable without quantum
transducers.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Universal Quantum Computing with Field-Mediated Unruh--DeWitt Qubits [0.0]
A set of universal quantum gates is a vital part of the theory of quantum computing.
UDW detectors in simple settings enable a collection of gates known to provide universal quantum computing.
arXiv Detail & Related papers (2024-02-15T18:19:45Z) - Universal quantum computation using atoms in cross-cavity systems [0.0]
We theoretically investigate a single-step implementation of both a universal two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup.
Within a high-cooper regime, the system exhibits an atomic-state-dependent $pi$-phase gate involving the two-mode single-photon bright and dark states.
arXiv Detail & Related papers (2023-08-28T20:09:54Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - A chip-scale polarization-spatial-momentum quantum SWAP gate in silicon
nanophotonics [7.963795592239752]
integrated quantum photonics increases the level of scaling complexity.
We demonstrate an efficient SWAP gate that swaps a photon's polarization qubit with its spatial-momentum qubit on a nanofabricated two-level silicon-photonics chip.
Our gate provides a pathway towards integrated quantum information processing for interconnected modular systems.
arXiv Detail & Related papers (2023-05-16T21:27:11Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Transverse mode-encoded quantum gate on a silicon photonic chip [5.670915963518252]
We demonstrate the first multimode implementation of a two-qubit quantum gate.
We show the ability of the gate to entangle two separated transverse mode qubits with an average fidelity of $0.89pm0.02$.
Our work paves the way for universal transverse mode-encoded quantum operations and large-scale multimode multi-DoF quantum systems.
arXiv Detail & Related papers (2021-11-08T03:45:51Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.