論文の概要: Successive Halving Top-k Operator
- arxiv url: http://arxiv.org/abs/2010.15552v1
- Date: Thu, 8 Oct 2020 15:57:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 12:41:42.660246
- Title: Successive Halving Top-k Operator
- Title(参考訳): 逐次ハロウィントップkオペレーター
- Authors: Micha{\l} Pietruszka, {\L}ukasz Borchmann, Filip Grali\'nski
- Abstract要約: トップk演算子を緩和する微分可能な逐次半減法を提案する。
トーナメントスタイルの選択を用いることで、スコアのベクター全体に対してソフトマックスを反復的に実行する必要性を回避することができる。
- 参考スコア(独自算出の注目度): 9.11408564741115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a differentiable successive halving method of relaxing the top-k
operator, rendering gradient-based optimization possible. The need to perform
softmax iteratively on the entire vector of scores is avoided by using a
tournament-style selection. As a result, a much better approximation of top-k
with lower computational cost is achieved compared to the previous approach.
- Abstract(参考訳): 本稿では,top-k演算子を緩和し,勾配に基づく最適化を実現するための微分可能な逐次半減法を提案する。
トーナメント方式の選択を用いて、スコアのベクトル全体に対してソフトマックスを反復的に行う必要性を回避する。
その結果,従来の手法に比べて計算コストの少ないtop-kの近似精度が向上した。
関連論文リスト
- Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms [4.389938747401259]
本稿では,期待値として記述された凸関数の最小値推定のための2次最適化について述べる。
Robbins-Monro 法を用いて逆 Hessian 行列の直接帰納的推定手法を提案する。
とりわけ、普遍的なニュートン法を開発し、提案手法の効率性を調べることができる。
論文 参考訳(メタデータ) (2024-01-15T13:58:30Z) - Parameter-free projected gradient descent [0.0]
我々は、射影勾配 Descent (PGD) を用いて、閉凸集合上の凸関数を最小化する問題を考える。
本稿では,AdaGradのパラメータフリーバージョンを提案する。これは初期化と最適化の距離に適応し,下位段階の平方ノルムの和に適応する。
提案アルゴリズムはプロジェクションステップを処理でき、リスタートを伴わず、従来のPGDと比較して軌道に沿ってリウィーディングや追加評価を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T07:22:44Z) - Efficient First-order Methods for Convex Optimization with Strongly
Convex Function Constraints [3.667453772837954]
強い凸関数制約を受ける凸関数を最小化する方法を示す。
有限個の結果に独立な意味を持つような空間パターンを同定する。
論文 参考訳(メタデータ) (2022-12-21T16:04:53Z) - Near-Optimal Algorithms for Making the Gradient Small in Stochastic
Minimax Optimization [14.719077076351377]
本研究では,スムーズなミニマックス最適化のための準定常点を求める問題について検討する。
Recursive IteratioNRAINと呼ばれる新しいアルゴリズムは凸凹と強凹の両方のケースを実現する。
論文 参考訳(メタデータ) (2022-08-11T16:55:26Z) - An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm
for First-order and Zeroth-order Optimization [111.24899593052851]
条件勾配アルゴリズム(Frank-Wolfeアルゴリズムとも呼ばれる)は、最近、機械学習コミュニティで人気を取り戻している。
ARCSは、ゼロ階最適化において凸問題を解く最初のゼロ階条件勾配スライディング型アルゴリズムである。
1次最適化では、ARCSの収束結果は、勾配クエリのオラクルの数で、従来のアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-09-18T07:08:11Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO最適化は、勾配推定、降下方向、ソリューション更新の3つの主要なステップを反復的に実行する。
我々は,ブラックボックス深層学習モデルによる説明文の評価や生成,効率的なオンラインセンサ管理など,ZO最適化の有望な応用を実証する。
論文 参考訳(メタデータ) (2020-06-11T06:50:35Z) - Differentiable Top-k Operator with Optimal Transport [135.36099648554054]
SOFTトップk演算子は、エントロピック最適輸送(EOT)問題の解として、トップk演算の出力を近似する。
提案した演算子をk-アネレスト近傍およびビーム探索アルゴリズムに適用し,性能向上を示す。
論文 参考訳(メタデータ) (2020-02-16T04:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。