論文の概要: Autoregressive Asymmetric Linear Gaussian Hidden Markov Models
- arxiv url: http://arxiv.org/abs/2010.15604v1
- Date: Tue, 27 Oct 2020 08:58:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-02 11:49:23.683208
- Title: Autoregressive Asymmetric Linear Gaussian Hidden Markov Models
- Title(参考訳): 自己回帰非対称線型ガウス隠れマルコフモデル
- Authors: Carlos Puerto-Santana and Pedro Larra\~naga and Concha Bielza
- Abstract要約: 非対称隠れマルコフモデルは、プロセスのトレンドを潜在変数として表現できるフレームワークを提供する。
提案モデルに適合するために,推論,隠蔽状態の復号化,パラメータ学習をいかに適応させるかを示す。
- 参考スコア(独自算出の注目度): 1.332091725929965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a real life process evolving over time, the relationship between its
relevant variables may change. Therefore, it is advantageous to have different
inference models for each state of the process. Asymmetric hidden Markov models
fulfil this dynamical requirement and provide a framework where the trend of
the process can be expressed as a latent variable. In this paper, we modify
these recent asymmetric hidden Markov models to have an asymmetric
autoregressive component, allowing the model to choose the order of
autoregression that maximizes its penalized likelihood for a given training
set. Additionally, we show how inference, hidden states decoding and parameter
learning must be adapted to fit the proposed model. Finally, we run experiments
with synthetic and real data to show the capabilities of this new model.
- Abstract(参考訳): 時間とともに進化する現実のプロセスでは、関連する変数間の関係が変化する可能性がある。
したがって、プロセスの各状態に対して異なる推論モデルを持つことが有利である。
非対称隠れマルコフモデルは、この動的要求を満たし、プロセスのトレンドを潜在変数として表現できるフレームワークを提供する。
本稿では,これらの非対称隠れマルコフモデルに非対称自己回帰成分を持たせるように修正し,与えられた訓練集合に対するペナルティ化確率を最大化する自己回帰順序をモデルが選択できるようにした。
さらに,提案モデルに適合するように推論や隠れ状態復号,パラメータ学習をどのように適用すべきかを示す。
最後に、この新モデルの能力を示すために、合成および実データを用いて実験を行う。
関連論文リスト
- EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - A Generative Model of Symmetry Transformations [44.87295754993983]
我々はデータの近似対称性を明示的に捉えることを目的とした生成モデルを構築した。
我々は、アフィンおよび色変換の下で対称性を捕捉する能力を実証的に実証した。
論文 参考訳(メタデータ) (2024-03-04T11:32:18Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Online Variational Filtering and Parameter Learning [26.79116194327116]
状態空間モデル(SSM)におけるオンライン状態推定とパラメータ学習のための変分法を提案する。
我々は、モデルパラメータと状態の後方分布の変動近似の両方に関して、ログエビデンスの低い境界を同時に最適化するために勾配を用いる。
従来の手法と異なり,本手法では,過去の観測結果が組み込まれてから修正する必要がなく,更新のコストが一定であるように,完全にオンラインで運用することが可能である。
論文 参考訳(メタデータ) (2021-10-26T10:25:04Z) - A moment-matching metric for latent variable generative models [0.0]
グッドハートの法則の範囲では、計量が対象となるとき、それは良い計量になるのをやめる。
モーメントに依存するモデル比較や正規化のための新しい指標を提案する。
潜時変動モデルを評価する際に, 適応分布からサンプルを抽出することが一般的である。
論文 参考訳(メタデータ) (2021-10-04T17:51:08Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Active and sparse methods in smoothed model checking [2.28438857884398]
スパース変分法とアクティブラーニングに基づくモデルチェックの平滑化の拡張について検討する。
スパース変分ガウス過程推論アルゴリズムのオンライン拡張は、スムーズなモデル検査のための能動的学習手法を実装するためのスケーラブルな方法を提供する。
論文 参考訳(メタデータ) (2021-04-20T13:03:25Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。