論文の概要: Active and sparse methods in smoothed model checking
- arxiv url: http://arxiv.org/abs/2104.09940v1
- Date: Tue, 20 Apr 2021 13:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-21 18:53:32.341793
- Title: Active and sparse methods in smoothed model checking
- Title(参考訳): 平滑化モデル検査におけるアクティブおよびスパース法
- Authors: Paul Piho, Jane Hillston
- Abstract要約: スパース変分法とアクティブラーニングに基づくモデルチェックの平滑化の拡張について検討する。
スパース変分ガウス過程推論アルゴリズムのオンライン拡張は、スムーズなモデル検査のための能動的学習手法を実装するためのスケーラブルな方法を提供する。
- 参考スコア(独自算出の注目度): 2.28438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smoothed model checking based on Gaussian process classification provides a
powerful approach for statistical model checking of parametric continuous time
Markov chain models. The method constructs a model for the functional
dependence of satisfaction probability on the Markov chain parameters. This is
done via Gaussian process inference methods from a limited number of
observations for different parameter combinations. In this work we consider
extensions to smoothed model checking based on sparse variational methods and
active learning. Both are used successfully to improve the scalability of
smoothed model checking. In particular, we see that active learning-based ideas
for iteratively querying the simulation model for observations can be used to
steer the model-checking to more informative areas of the parameter space and
thus improve sample efficiency. Online extensions of sparse variational
Gaussian process inference algorithms are demonstrated to provide a scalable
method for implementing active learning approaches for smoothed model checking.
- Abstract(参考訳): ガウス過程の分類に基づく平滑化モデルチェックは、パラメトリック連続時間マルコフ連鎖モデルの統計モデルチェックに強力なアプローチを提供する。
本手法はマルコフ連鎖パラメータに対する満足度確率の関数的依存性に関するモデルを構築する。
これは、異なるパラメータの組み合わせに対する限られた数の観測からガウス過程推論メソッドを介して行われる。
本研究では,スパース変分法とアクティブラーニングに基づくスムーズなモデル検査の拡張を検討する。
どちらもスムーズなモデルチェックのスケーラビリティ向上に成功している。
特に,シミュレーションモデルを反復的に問合せするアクティブな学習に基づくアイデアは,パラメータ空間のより有意義な領域にモデルチェックを制御し,サンプル効率を向上させるのに有用である。
スパース変分ガウス過程推論アルゴリズムのオンライン拡張は、スムーズなモデル検査のための能動的学習手法を実装するためのスケーラブルな方法を提供する。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Gaussian Process Models with Low-Rank Correlation Matrices for Both
Continuous and Categorical Inputs [0.0]
混合連続および分類ガウス過程モデルにおけるクロス相関行列の低ランク近似を用いた手法を提案する。
低ランク相関(LRC)は、近似の適切なランクを選択することで、問題のパラメータの数に柔軟に適応する能力を提供する。
論文 参考訳(メタデータ) (2020-10-06T09:38:35Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。