Interpretable Data-Driven Demand Modelling for On-Demand Transit
Services
- URL: http://arxiv.org/abs/2010.15673v3
- Date: Fri, 1 Oct 2021 21:44:47 GMT
- Title: Interpretable Data-Driven Demand Modelling for On-Demand Transit
Services
- Authors: Nael Alsaleh and Bilal Farooq
- Abstract summary: We developed trip and distribution models for on-demand transit (ODT) services at Dissemination areas (DA) level.
The results revealed that higher trip distribution levels are expected between dissemination areas with commercial/industrial land-use type and areas with high-density residential land-use.
- Score: 6.982614422666432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, with the advancements in information and communication
technology, different emerging on-demand shared mobility services have been
introduced as innovative solutions in the low-density areas, including
on-demand transit (ODT), mobility on-demand (MOD) transit, and crowdsourced
mobility services. However, due to their infancy, there is a strong need to
understand and model the demand for these services. In this study, we developed
trip production and distribution models for ODT services at Dissemination areas
(DA) level using four machine learning algorithms: Random Forest (RF), Bagging,
Artificial Neural Network (ANN) and Deep Neural Network (DNN). The data used in
the modelling process were acquired from Belleville's ODT operational data and
2016 census data. Bayesian optimalization approach was used to find the optimal
architecture of the adopted algorithms. Moreover, post-hoc model was employed
to interpret the predictions and examine the importance of the explanatory
variables. The results showed that the land-use type was the most important
variable in the trip production model. On the other hand, the demographic
characteristics of the trip destination were the most important variables in
the trip distribution model. Moreover, the results revealed that higher trip
distribution levels are expected between dissemination areas with
commercial/industrial land-use type and dissemination areas with high-density
residential land-use. Our findings suggest that the performance of ODT services
can be further enhanced by (a) locating idle vehicles in the neighbourhoods
with commercial/industrial land-use and (b) using the spatio-temporal demand
models obtained in this work to continuously update the operating fleet size.
Related papers
- Deep Activity Model: A Generative Approach for Human Mobility Pattern Synthesis [11.90100976089832]
We develop a novel generative deep learning approach for human mobility modeling and synthesis.
It incorporates both activity patterns and location trajectories using open-source data.
The model can be fine-tuned with local data, allowing it to adapt to accurately represent mobility patterns across diverse regions.
arXiv Detail & Related papers (2024-05-24T02:04:10Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Predicting the Skies: A Novel Model for Flight-Level Passenger Traffic
Forecasting [0.0]
This study introduces a novel, multimodal deep learning approach to the challenge of predicting flight-level passenger traffic.
Our model ingests historical traffic data, fare closure information, and seasonality attributes specific to each flight.
Our model demonstrates an approximate 33% improvement in Mean Squared Error compared to traditional benchmarks.
arXiv Detail & Related papers (2024-01-07T06:51:26Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Regions are Who Walk Them: a Large Pre-trained Spatiotemporal Model
Based on Human Mobility for Ubiquitous Urban Sensing [24.48869607589127]
We propose a largetemporal model based on trajectories (RAW) to tap into the rich information within human mobility data.
Our proposed method, relying solely on human mobility data without additional features, exhibits certain level of relevance in user profiling and region analysis.
arXiv Detail & Related papers (2023-11-17T11:55:11Z) - Context-aware multi-head self-attentional neural network model for next
location prediction [19.640761373993417]
We utilize a multi-head self-attentional (A) neural network that learns location patterns from historical location visits.
We demonstrate that proposed the model outperforms other state-of-the-art prediction models.
We believe that the proposed model is vital for context-aware mobility prediction.
arXiv Detail & Related papers (2022-12-04T23:40:14Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
arXiv Detail & Related papers (2022-11-11T09:46:58Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - TLab: Traffic Map Movie Forecasting Based on HR-NET [23.40323690536007]
In our solution, hand-crafted features are input into the model in a form of channels.
In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.
arXiv Detail & Related papers (2020-11-13T18:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.