Droplet Epitaxy of Semiconductor Nanostructures for Quantum Photonic
Devices
- URL: http://arxiv.org/abs/2103.15083v1
- Date: Sun, 28 Mar 2021 08:55:55 GMT
- Title: Droplet Epitaxy of Semiconductor Nanostructures for Quantum Photonic
Devices
- Authors: Massimo Gurioli, Zhiming Wang, Armando Rastelli, Takashi Kuroda,
Stefano Sanguinetti
- Abstract summary: A key component is a light source, able to provide single or entangled photon pairs.
Semiconductor quantum dots are very attractive, as they can be integrated with other photonic and electronic components in miniaturized chips.
Recent reports on the generation of highly entangled photon pairs, combined with good photon indistinguishability, suggest that DE and LDE QDs may complement (and sometime even outperform) conventional SK InGaAs QDs as quantum emitters.
- Score: 1.0439136407307046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The long dreamed quantum internet would consist of a network of quantum nodes
(solid-state or atomic systems) linked by flying qubits, naturally based on
photons, travelling over long distances at the speed of light, with negligible
decoherence. A key component is a light source, able to provide single or
entangled photon pairs. Among the different platforms, semiconductor quantum
dots are very attractive, as they can be integrated with other photonic and
electronic components in miniaturized chips. In the early 1990s two approaches
were developed to synthetize self-assembled epitaxial semiconductor quantum
dots (QDs), or artificial atoms, namely the Stranski-Krastanov (SK) and the
droplet epitaxy (DE) method. Because of its robustness and simplicity, the SK
method became the workhorse to achieve several breakthroughs in both
fundamental and technological areas. The need for specific emission wavelengths
or structural and optical properties has nevertheless motivated further
research on the DE method and its more recent development, the
local-droplet-etching (LDE), as complementary routes to obtain high quality
semiconductor nanostructures. The recent reports on the generation of highly
entangled photon pairs, combined with good photon indistinguishability, suggest
that DE and LDE QDs may complement (and sometime even outperform) conventional
SK InGaAs QDs as quantum emitters. We present here a critical survey of the
state of the art of DE and LDE, highlighting the advantages and weaknesses, the
obtained achievements and the still open challenges, in view of applications in
quantum communication and technology.
Related papers
- Robust Single-Photon Generation for Quantum Information Enabled by Stimulated Adiabatic Rapid Passage [0.0]
We present a robust scheme for the coherent generation of indistinguishable single-photon states with very low photon number coherence.
Our novel approach combines the advantages of adiabatic rapid passage (ARP) and stimulated two-photon excitation (sTPE)
We demonstrate robust quantum light generation while maintaining the prime quantum-optical quality of the emitted light state.
arXiv Detail & Related papers (2024-09-21T02:12:16Z) - Widely tunable solid-state source of single-photons matching an atomic
transition [0.18593647992779513]
Hybrid quantum technologies aim to harness the best characteristics of multiple quantum systems.
quantum dots embedded in semiconductor nanowires can produce highly pure, deterministic, and indistinguishable single-photons with high repetition.
atomic ensembles offer robust photon storage capabilities and strong optical nonlinearities that can be controlled with single-photons.
arXiv Detail & Related papers (2023-09-13T05:47:26Z) - Highly photostable Zn-treated halide perovskite nanocrystals for
efficient single photon generation [0.0]
We fabricate and characterize in a systematic manner colloidal-treated $CsPbBr_3$ NCs obtained through $Zn2+$ ion doping at the Pb-site.
These doped NCs exhibit high single-photon purity, reduced blinking on a sub-millisecond timescale and stability of the bright state for excitation powers well above the saturation levels.
arXiv Detail & Related papers (2023-07-29T11:23:30Z) - Temperature-independent almost perfect photon entanglement from quantum
dots via the SUPER scheme [0.0]
Entangled photon pairs are essential for quantum communication technology.
quantum dots are ready to be used as entangled photon pair sources in applications requiring high degrees of entanglement up to temperatures of about $80,$K.
arXiv Detail & Related papers (2023-07-01T11:25:35Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Integrated quantum photonics with silicon carbide: challenges and
prospects [0.0]
Quantum computing protocols place strict limits on the acceptable photon losses in the system.
Most materials that host spin defects are challenging to process.
Silicon carbide (SiC) is well-suited to bridge the classical-quantum photonics gap.
arXiv Detail & Related papers (2020-10-29T15:44:13Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.