Coherent laser spectroscopy of highly charged ions using quantum logic
- URL: http://arxiv.org/abs/2010.15984v1
- Date: Thu, 29 Oct 2020 23:00:08 GMT
- Title: Coherent laser spectroscopy of highly charged ions using quantum logic
- Authors: P. Micke, T. Leopold, S. A. King, E. Benkler, L. J. Spie{\ss}, L.
Schm\"oger, M. Schwarz, J. R. Crespo L\'opez-Urrutia, P. O. Schmidt
- Abstract summary: We introduce coherent laser spectroscopy on highly charged ions (HCI) with an eight orders of magnitude leap in precision.
We probe the forbidden optical transition in $40$Ar$13+$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision spectroscopy of atomic systems is an invaluable tool for the
advancement of our understanding of fundamental interactions and symmetries.
Recently, highly charged ions (HCI) have been proposed for sensitive tests of
physics beyond the Standard Model and as candidates for high-accuracy atomic
clocks. However, the implementation of these ideas has been hindered by the
parts-per-million level spectroscopic accuracies achieved to date. Here, we
cool a trapped HCI to the lowest reported temperatures, and introduce coherent
laser spectroscopy on HCI with an eight orders of magnitude leap in precision.
We probe the forbidden optical transition in $^{40}$Ar$^{13+}$ at 441 nm using
quantum-logic spectroscopy and measure both its excited-state lifetime and
$g$-factor. Our work ultimately unlocks the potential of HCI, a large,
ubiquitous atomic class, for quantum information processing, novel frequency
standards, and highly sensitive tests of fundamental physics, such as searching
for dark matter candidates or violations of fundamental symmetries.
Related papers
- Identification of highly-forbidden optical transitions in highly charged ions [33.79531630553757]
Recently, the first highly charged ions (HCI) based optical clock was demonstrated using Ar$13+$.
Here, we explore quantum logic-inspired experimental search techniques for sub-Hertz clock transitions in HCI confined to a linear Paul trap.
arXiv Detail & Related papers (2024-06-06T12:41:22Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Precision Spectroscopy of Fast, Hot Exotic Isotopes Using Machine
Learning Assisted Event-by-Event Doppler Correction [0.6999740786886537]
We propose an experimental scheme for performing sensitive, high-precision laser spectroscopy studies on fast exotic isotopes.
The ability to perform in-flight spectroscopy, directly on highly energetic beams, offers unique opportunities to study short-lived isotopes with lifetimes in the millisecond range.
arXiv Detail & Related papers (2023-04-25T19:53:59Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Improving the spectroscopic knowledge of neutral Neodymium [0.0]
Laser cooling and trapping of lanthanides has opened the possibility to carry out new experiments with ultracold dipolar gases.
We present here a detailed modeling of the energy levels of neutral neodymium (Nd), an element belonging to the left part of the lanthanide row.
arXiv Detail & Related papers (2022-09-30T14:08:33Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Relativistic meson spectra on ion-trap quantum simulators [0.0]
We analyze the capability of analog ion traps to explore relativistic meson spectra on current devices.
We focus on the E_8 quantum field theory regime, which arises due to longitudinal perturbations at the critical point of the transverse-field Ising model.
arXiv Detail & Related papers (2021-07-19T18:00:03Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Prospect for precision quantum logic spectroscopy of vibrational
overtone transitions in molecular oxygen ions [0.0]
We propose a full quantum logic spectroscopy scheme for molecular oxygen ions.
We theoretically investigate the feasibility of quantum logic assisted state detection and preparation.
We provide coupling rates for a direct single-photonrupole quad excitation of a vibrational overtone transition.
arXiv Detail & Related papers (2020-02-13T16:01:06Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.