Identification of highly-forbidden optical transitions in highly charged ions
- URL: http://arxiv.org/abs/2406.04015v1
- Date: Thu, 6 Jun 2024 12:41:22 GMT
- Title: Identification of highly-forbidden optical transitions in highly charged ions
- Authors: Shuying Chen, Lukas J. Spieß, Alexander Wilzewski, Malte Wehrheim, Kai Dietze, Ivan Vybornyi, Klemens Hammerer, Jose R. Crespo Lopez-Urrutia, Piet O. Schmidt,
- Abstract summary: Recently, the first highly charged ions (HCI) based optical clock was demonstrated using Ar$13+$.
Here, we explore quantum logic-inspired experimental search techniques for sub-Hertz clock transitions in HCI confined to a linear Paul trap.
- Score: 33.79531630553757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical clocks represent the most precise experimental devices, finding application in fields spanning from frequency metrology to fundamental physics. Recently, the first highly charged ions (HCI) based optical clock was demonstrated using Ar$^{13+}$, opening up a plethora of novel systems with advantageous atomic properties for high accuracy clocks. While numerous candidate systems have been explored theoretically, the considerable uncertainty of the clock transition frequency for most species poses experimental challenges. Here, we close this gap by exploring quantum logic-inspired experimental search techniques for sub-Hertz clock transitions in HCI confined to a linear Paul trap. These techniques encompass Rabi excitation, an optical dipole force (ODF) approach, and linear continuous sweeping (LCS) and their applicability for different types of HCI. Through our investigation, we provide tools to pave the way for the development of exceptionally precise HCI-based optical clocks.
Related papers
- Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - Enhancing strontium clock atom interferometry using quantum optimal
control [0.09786690381850353]
We study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses.
This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve scientific goals.
arXiv Detail & Related papers (2022-07-26T23:56:33Z) - Universality-of-clock-rates test using atom interferometry with $T^{3}$
scaling [63.08516384181491]
Atomic clocks generate delocalized quantum clocks.
Tests of universality of clock rates (one facet of LPI) to atom interferometry generating delocalized quantum clocks proposed.
Results extend our notion of time, detached from classical and localized philosophies.
arXiv Detail & Related papers (2022-04-05T12:26:56Z) - Floquet engineering Hz-Level Rabi Spectra in Shallow Optical Lattice
Clock [19.242155546173255]
In optical lattice clock systems deep lattice potentials are used to trap ultra-cold atoms.
decoherence, induced by Raman scattering, can significantly be reduced if atomic clocks are realized in shallow optical lattices.
We demonstrate that the Rabi frequency and the Bloch bands can be tuned, simultaneously and independently.
arXiv Detail & Related papers (2021-10-14T06:13:01Z) - SU(2) hyper-clocks: quantum engineering of spinor interferences for time
and frequency metrology [0.0]
Ramsey's method of separated fields was elaborated boosting over many decades metrological performances of atomic clocks.
A generalization of this interferometric method is presented replacing the two single coherent excitations by arbitrary composite laser pulses.
Hyper-clocks based on three-pulse and five-pulse interrogation protocols are studied and shown to exhibit nonlinear cubic and quintic sensitivities to residual probe-induced light-shifts.
arXiv Detail & Related papers (2021-09-28T09:01:20Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Dipole-dipole frequency shifts in multilevel atoms [0.0]
Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of next-generation atomic clocks.
We compute dipolar frequency shifts accounting for the intrinsic atomic multilevel structure in standard Ramsey spectroscopy.
arXiv Detail & Related papers (2021-02-11T00:36:20Z) - Coherent laser spectroscopy of highly charged ions using quantum logic [0.0]
We introduce coherent laser spectroscopy on highly charged ions (HCI) with an eight orders of magnitude leap in precision.
We probe the forbidden optical transition in $40$Ar$13+$ at 441 nm using quantum-logic spectroscopy and measure both its excited-state lifetime and $g$-factor.
arXiv Detail & Related papers (2020-10-29T23:00:08Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.