論文の概要: Knowledge-Based Construction of Confusion Matrices for Multi-Label
Classification Algorithms using Semantic Similarity Measures
- arxiv url: http://arxiv.org/abs/2011.00109v2
- Date: Mon, 16 Aug 2021 09:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 16:09:34.353086
- Title: Knowledge-Based Construction of Confusion Matrices for Multi-Label
Classification Algorithms using Semantic Similarity Measures
- Title(参考訳): 意味的類似度尺度を用いたマルチラベル分類アルゴリズムのための混乱行列の知識ベース構築
- Authors: Houcemeddine Turki, Mohamed Ali Hadj Taieb, Mohamed Ben Aouicha
- Abstract要約: 本研究では,予測ラベルを多ラベル分類において予測ラベルと整合させる新しい手法を定義する。
マルチラベル分類アルゴリズムをより効果的に評価するために,高精度な乱雑行列を生成する手法を開発した。
- 参考スコア(独自算出の注目度): 4.38301148531795
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: So far, multi-label classification algorithms have been evaluated using
statistical methods that do not consider the semantics of the considered
classes and that fully depend on abstract computations such as Bayesian
Reasoning. Currently, there are several attempts to develop ontology-based
methods for a better assessment of supervised classification algorithms. In
this research paper, we define a novel approach that aligns expected labels
with predicted labels in multi-label classification using ontology-driven
feature-based semantic similarity measures and we use it to develop a method
for creating precise confusion matrices for a more effective evaluation of
multi-label classification algorithms.
- Abstract(参考訳): これまで,検討されたクラスの意味論を考慮せず,ベイズ推論のような抽象計算に完全に依存する統計手法を用いて,多ラベル分類アルゴリズムを評価してきた。
現在、教師付き分類アルゴリズムのより良い評価のためのオントロジーに基づく手法を開発する試みがいくつかある。
本稿では、オントロジーに基づく特徴に基づく意味的類似度尺度を用いて、予測ラベルをマルチラベル分類で予測ラベルに整合させる新しいアプローチを定義し、それを用いて、より効果的なマルチラベル分類アルゴリズムの評価のための正確な混乱行列を作成する方法を開発した。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Hierarchical confusion matrix for classification performance evaluation [0.0]
階層的混乱行列の概念を開発し、階層的分類問題にその適用性を証明する。
我々は,3つの実世界の階層的分類のベンチマークにおけるモデルを評価するために,新しい混乱行列に基づく測度を用いる。
その結果、このアプローチの理性とその階層的分類問題を評価するための有用性について概説した。
論文 参考訳(メタデータ) (2023-06-15T19:31:59Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Knowledge Distillation from Single to Multi Labels: an Empirical Study [14.12487391004319]
クラス活性化マップ(CAM)に基づく新しい蒸留法を提案する。
以上の結果から,ロジット法はマルチラベル分類に適していないことが示唆された。
そこで本研究では,適切な暗黒知識にクラス情報を導入し,最終分類結果と高い相関性を持たせることを提案する。
論文 参考訳(メタデータ) (2023-03-15T04:39:01Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Self-Training: A Survey [5.772546394254112]
半教師付きアルゴリズムは、ラベル付き観測の小さなセットとラベルなし観測の大きなセットから予測関数を学習することを目的としている。
近年,自己学習手法が注目されていることは確かである。
本稿では,バイナリクラスとマルチクラス分類のための自己学習手法と,その変種と関連する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-24T11:40:44Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Multi-label Classification via Adaptive Resonance Theory-based
Clustering [9.58897929546191]
本稿では,適応共振理論(art)に基づくクラスタリングアルゴリズムとラベル確率計算のためのベイズ法を適用し,連続学習が可能なマルチラベル分類アルゴリズムを提案する。
合成および実世界のマルチラベルデータセットを用いた実験結果は,提案アルゴリズムが他のよく知られたアルゴリズムと競合する分類性能を持つことを示した。
論文 参考訳(メタデータ) (2021-03-02T06:51:41Z) - Evolving Multi-label Classification Rules by Exploiting High-order Label
Correlation [2.9822184411723645]
マルチラベル分類タスクでは、各問題インスタンスは同時に複数のクラスに関連付けられている。
ラベル間の相関は、ペアワイズ相関の取得や高次相関の活用など、様々なレベルで利用することができる。
本稿では,教師付き学習分類器システムを用いて,ラベルのサブセット内での高次ラベル相関を利用することを目的とする。
論文 参考訳(メタデータ) (2020-07-22T18:13:12Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
論文 参考訳(メタデータ) (2020-05-18T15:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。