Converting coherence based on positive-operator-valued measures into
entanglement
- URL: http://arxiv.org/abs/2011.00220v3
- Date: Tue, 18 May 2021 01:51:05 GMT
- Title: Converting coherence based on positive-operator-valued measures into
entanglement
- Authors: Sunho Kim, Chunhe Xiong, Asutosh Kumar, and Junde Wu
- Abstract summary: Quantum coherence is the basic ingredient in many quantum information tasks.
We show that the block coherence can be transformed into entanglement via a block incoherent operation.
- Score: 2.624902795082451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum resource theories provide a diverse and powerful framework for
extensively studying the phenomena in quantum physics. Quantum coherence, a
quantum resource, is the basic ingredient in many quantum information tasks. It
is a subject of broad and current interest in quantum information, and many new
concepts have been introduced and generalized since its establishment. Here we
show that the block coherence can be transformed into entanglement via a block
incoherent operation. Moreover, we find that the POVM-based coherence
associated with block coherence through the Naimark extension acts as a
potential resource from the perspective of generating entanglement. Finally, we
discuss avenues of creating entanglement from POVM-based coherence, present
strategies that require embedding channels and auxiliary systems, give some
examples, and generalize them.
Related papers
- Coherence-mixedness trade-offs [2.4940844507983875]
We show that quantum coherence is severely restricted by environmental noise in general quantum processing.
We derive basis-independent constraints on the attainable quantum coherence imposed by the mixedness of a quantum state.
arXiv Detail & Related papers (2024-05-23T09:07:46Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - A Compendious Review of Majorization-Based Resource Theories: Quantum
Information and Quantum Thermodynamics [0.0]
We aim to augment our comprehension of genuine quantum phenomena manifested across diverse technological applications.
We emphasize the underlying similarities shared by various resources, including bipartite quantum entanglement, quantum coherence, and superposition.
arXiv Detail & Related papers (2023-06-20T13:02:52Z) - Intrinsic relationships of Quantum Resource Theories and their roles in
Quantum Metrology [0.0]
We focus on the resource theories of entanglement, discord-like quantum correlations, and quantum coherence.
This thesis includes also the contributions on the dynamics of these quantum resources in various models of open quantum systems.
arXiv Detail & Related papers (2022-11-15T08:21:55Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Deterministic Generation of Multipartite Entanglement via Causal
Activation in the Quantum Internet [7.219077740523682]
Entanglement represents textitthe'' key resource for several applications of quantum information processing.
We propose a novel generation scheme exhibiting two attractive features.
The only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits.
arXiv Detail & Related papers (2021-12-01T15:02:34Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.