On the Transfer of Knowledge in Quantum Algorithms
- URL: http://arxiv.org/abs/2501.14120v2
- Date: Fri, 18 Jul 2025 08:26:25 GMT
- Title: On the Transfer of Knowledge in Quantum Algorithms
- Authors: Esther Villar-Rodriguez, Eneko Osaba, Izaskun Oregi, Sebastián V. Romero, Julián Ferreiro-Vélez,
- Abstract summary: We introduce a joint notation that consolidates and extends prior work in Transfer Learning and Transfer Optimization.<n>We classify existing ToK strategies and principles into a structured taxonomy that helps researchers position their methods within a broader conceptual map.<n>These examples highlight ToK's potential to improve performance and generalization in quantum algorithms.
- Score: 0.3774866290142281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is poised to transform computational paradigms across science and industry. As the field evolves, it can benefit from established classical methodologies, including promising paradigms such as Transfer of Knowledge (ToK). This work serves as a brief, self-contained reference for ToK, unifying its core principles under a single formal framework. We introduce a joint notation that consolidates and extends prior work in Transfer Learning and Transfer Optimization, bridging traditionally separate research lines and enabling a common language for knowledge reuse. Building on this foundation, we classify existing ToK strategies and principles into a structured taxonomy that helps researchers position their methods within a broader conceptual map. We then extend key transfer protocols to quantum computing, introducing two novel use cases (reverse annealing and multitasking QAOA) alongside a sequential VQE approach that supports and validates prior findings. These examples highlight ToK's potential to improve performance and generalization in quantum algorithms. Finally, we outline challenges and opportunities for integrating ToK into quantum computing, emphasizing its role in reducing resource demands and accelerating problem-solving. This work lays the groundwork for future synergies between classical and quantum computing through a shared, transferable knowledge framework.
Related papers
- Quantum-Accelerated Wireless Communications: Concepts, Connections, and Implications [59.0413662882849]
Quantum computing is poised to redefine the algorithmic foundations of communication systems.<n>This article outlines the fundamentals of quantum computing in a style familiar to the communications society.<n>We highlight a mathematical harmony between quantum and wireless systems, which makes the topic more enticing to wireless researchers.
arXiv Detail & Related papers (2025-06-25T22:25:47Z) - On Dequantization of Supervised Quantum Machine Learning via Random Fourier Features [0.0]
We derive bounds on the generalization performance gap between classical RFF models and quantum models for regression and classification tasks.<n>Our findings not only broaden the applicability of RFF-based dequantization but also enhance the understanding of potential quantum advantages in practical machine-learning tasks.
arXiv Detail & Related papers (2025-05-21T18:00:03Z) - A Survey of Quantum Transformers: Architectures, Challenges and Outlooks [82.4736481748099]
Quantum Transformers integrate the representational power of classical Transformers with the computational advantages of quantum computing.<n>Since 2022, research in this area has rapidly expanded, giving rise to diverse technical paradigms and early applications.<n>This paper presents the first comprehensive, systematic, and in-depth survey of quantum Transformer models.
arXiv Detail & Related papers (2025-04-04T05:40:18Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Supervised Learning [0.5439020425819]
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges.
The field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage.
This paper aims to provide a classical perspective on current quantum algorithms for supervised learning.
arXiv Detail & Related papers (2024-07-24T11:05:05Z) - Quantum Multi-Agent Reinforcement Learning for Aerial Ad-hoc Networks [0.19791587637442667]
This paper presents an aerial communication use case and introduces a hybrid quantum-classical (HQC) ML algorithm to solve it.
Results show a slight increase in performance for the quantum-enhanced solution with respect to a comparable classical algorithm.
These promising results show the potential of QMARL to industrially-relevant complex use cases.
arXiv Detail & Related papers (2024-04-26T15:57:06Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
We explore the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs)
Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes.
This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems.
arXiv Detail & Related papers (2023-12-15T16:51:36Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing.
Key issue is how to address the inherent non-linearity of classical deep learning.
We introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning.
arXiv Detail & Related papers (2022-12-22T16:06:24Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Multi-disk clutch optimization using quantum annealing [34.82692226532414]
We develop a new quantum algorithm to solve a problem with significant practical relevance in clutch manufacturing.
It is demonstrated how quantum optimization can play a role in real industrial applications in the manufacturing sector.
arXiv Detail & Related papers (2022-08-11T16:34:51Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Converting coherence based on positive-operator-valued measures into
entanglement [2.624902795082451]
Quantum coherence is the basic ingredient in many quantum information tasks.
We show that the block coherence can be transformed into entanglement via a block incoherent operation.
arXiv Detail & Related papers (2020-10-31T09:16:26Z) - The prospects of quantum computing in computational molecular biology [0.0]
We examine how current quantum algorithms could revolutionize computational biology and bioinformatics.
There are potential benefits across the entire field, from the ability to process vast amounts of information.
It is also important to recognize the caveats and challenges in this new technology.
arXiv Detail & Related papers (2020-05-26T15:18:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Methods for Accelerating Geospatial Data Processing Using Quantum
Computers [0.0]
This paper describes an approach to satellite image classification using a universal quantum enhancement to convolutional neural networks.
We find a performance improvement over previous quantum efforts in this domain and identify potential refinements that could lead to an eventual quantum advantage.
We benchmark these networks using the SAT-4 satellite imagery data set in order to demonstrate the utility of machine learning techniques in the space industry.
arXiv Detail & Related papers (2020-04-07T02:14:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.