論文の概要: MARNet: Multi-Abstraction Refinement Network for 3D Point Cloud Analysis
- arxiv url: http://arxiv.org/abs/2011.00923v1
- Date: Mon, 2 Nov 2020 12:07:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-30 12:25:25.225278
- Title: MARNet: Multi-Abstraction Refinement Network for 3D Point Cloud Analysis
- Title(参考訳): marnet:3dポイントクラウド解析のためのマルチアブストラクションリファインメントネットワーク
- Authors: Rahul Chakwate, Arulkumar Subramaniam, Anurag Mittal
- Abstract要約: 既存のディープラーニング手法では、特徴間の相互作用が限られているため、情報の粒度が異なるため、利用できない。
マルチレベルの特徴間の効果的な情報交換を実現するMARNet(Multi-Abstraction Refinement Network)を提案する。
形状分類と粒度の粗いセマンティックセマンティックセグメンテーションの2つの課題に対して,MARNetの有効性を実証的に示す。
- 参考スコア(独自算出の注目度): 9.34612743192798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning from 3D point clouds is challenging due to their
inherent nature of permutation invariance and irregular distribution in space.
Existing deep learning methods follow a hierarchical feature extraction
paradigm in which high-level abstract features are derived from low-level
features. However, they fail to exploit different granularity of information
due to the limited interaction between these features. To this end, we propose
Multi-Abstraction Refinement Network (MARNet) that ensures an effective
exchange of information between multi-level features to gain local and global
contextual cues while effectively preserving them till the final layer. We
empirically show the effectiveness of MARNet in terms of state-of-the-art
results on two challenging tasks: Shape classification and Coarse-to-fine
grained semantic segmentation. MARNet significantly improves the classification
performance by 2% over the baseline and outperforms the state-of-the-art
methods on semantic segmentation task.
- Abstract(参考訳): 3次元点雲からの表現学習は、空間における置換不変性や不規則分布の性質から困難である。
既存のディープラーニング手法は、ハイレベルな抽象的特徴を低レベル特徴から導出する階層的特徴抽出パラダイムに従っている。
しかし、これらの特徴間の相互作用が限られているため、異なる情報の粒度を利用することができない。
そこで本研究では,マルチレベル機能間の情報交換を効果的に行うマルチ・アブストラクション・リファインメント・ネットワーク(marnet)を提案する。
形状分類と粒度の粗いセマンティックセマンティックセグメンテーションの2つの課題に対して,MARNetの有効性を実証的に示す。
MARNetは、ベースラインよりも2%高い分類性能を向上し、セマンティックセグメンテーションタスクにおける最先端メソッドよりも優れています。
関連論文リスト
- Exploiting Object-based and Segmentation-based Semantic Features for Deep Learning-based Indoor Scene Classification [0.5572976467442564]
本稿では,オブジェクト検出から得られたセマンティック情報とセマンティックセグメンテーション技術の両方を用いる。
セグメンテーションマスクを用いて,Hu-Moments Features (SHMFs)によって指定されたHu-Momentsベースのセグメンテーションカテゴリの形状特徴を提供する手法を提案する。
GOS$2$F$2$Appによって指定された3つのメインブランチネットワークも提案されている。
論文 参考訳(メタデータ) (2024-04-11T13:37:51Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
マルチモーダル特徴の融合と復号を導くために,クロスモーダル・セマンティックスをマイニングする手法を提案する。
具体的には,(1)全周減衰核融合(AF),(2)粗大デコーダ(CFD),(3)多層自己超越からなる新しいネットワークXMSNetを提案する。
論文 参考訳(メタデータ) (2023-05-17T14:30:11Z) - Part-guided Relational Transformers for Fine-grained Visual Recognition [59.20531172172135]
識別的特徴を学習し,特徴変換モジュールとの相関関係を探索するフレームワークを提案する。
提案手法は,3-of-the-levelオブジェクト認識において,部分ブランチの追加に頼らず,最先端の性能に達する。
論文 参考訳(メタデータ) (2022-12-28T03:45:56Z) - Semantic Labeling of High Resolution Images Using EfficientUNets and
Transformers [5.177947445379688]
畳み込みニューラルネットワークとディープトランスを組み合わせた新しいセグメンテーションモデルを提案する。
提案手法は,最先端技術と比較してセグメント化精度が向上することを示す。
論文 参考訳(メタデータ) (2022-06-20T12:03:54Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
本稿では,機能クラスタリング手法に基づく効果的なUnsupervised Domain Adaptation(UDA)戦略を提案する。
識別的クラスタリング性能を高めるために,2つの新しい学習目標を導入する。
論文 参考訳(メタデータ) (2020-11-25T10:06:22Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D
Point Clouds [37.703770427574476]
本稿では,初めて3次元意味的エッジ検出タスクに取り組む。
本稿では,2つのタスクを共同で行う2ストリーム完全畳み込みネットワークを提案する。
特に,両タスクの性能向上のために,領域情報とエッジ情報を明示的に関連付ける共同改良モジュールを設計する。
論文 参考訳(メタデータ) (2020-07-14T08:00:35Z) - Segment as Points for Efficient Online Multi-Object Tracking and
Segmentation [66.03023110058464]
本稿では,コンパクトな画像表現を非秩序な2次元点クラウド表現に変換することで,セグメントに基づくインスタンス埋め込みの学習に有効な方法を提案する。
本手法は,画像ではなく,ランダムに選択された点から識別インスタンスの埋め込みを学習する,新たなトラッキング・バイ・ポイントのパラダイムを生成する。
PointTrackという名前のオンラインMOTSフレームワークは、最先端のすべてのメソッドを大きなマージンで上回っている。
論文 参考訳(メタデータ) (2020-07-03T08:29:35Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。