Residual Likelihood Forests
- URL: http://arxiv.org/abs/2011.02086v1
- Date: Wed, 4 Nov 2020 00:59:41 GMT
- Title: Residual Likelihood Forests
- Authors: Yan Zuo, Tom Drummond
- Abstract summary: This paper presents a novel ensemble learning approach called Residual Likelihood Forests (RLF)
Our weak learners produce conditional likelihoods that are sequentially optimized using global loss in the context of previous learners.
When compared against several ensemble approaches including Random Forests and Gradient Boosted Trees, RLFs offer a significant improvement in performance.
- Score: 19.97069303172077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel ensemble learning approach called Residual
Likelihood Forests (RLF). Our weak learners produce conditional likelihoods
that are sequentially optimized using global loss in the context of previous
learners within a boosting-like framework (rather than probability
distributions that are measured from observed data) and are combined
multiplicatively (rather than additively). This increases the efficiency of our
strong classifier, allowing for the design of classifiers which are more
compact in terms of model capacity. We apply our method to several machine
learning classification tasks, showing significant improvements in performance.
When compared against several ensemble approaches including Random Forests and
Gradient Boosted Trees, RLFs offer a significant improvement in performance
whilst concurrently reducing the required model size.
Related papers
- Can a Single Tree Outperform an Entire Forest? [5.448070998907116]
The prevailing mindset is that a single decision tree underperforms classic random forests in testing accuracy.
This study challenges such a mindset by significantly improving the testing accuracy of an oblique regression tree.
Our approach reformulates tree training as a differentiable unconstrained optimization task.
arXiv Detail & Related papers (2024-11-26T00:18:18Z) - Binary Classification: Is Boosting stronger than Bagging? [5.877778007271621]
We introduce Enhanced Random Forests, an extension of vanilla Random Forests with extra functionalities and adaptive sample and model weighting.
We develop an iterative algorithm for adapting the training sample weights, by favoring the hardest examples, and an approach for finding personalized tree weighting schemes for each new sample.
Our method significantly improves upon regular Random Forests across 15 different binary classification datasets and considerably outperforms other tree methods, including XGBoost.
arXiv Detail & Related papers (2024-10-24T23:22:33Z) - Inherently Interpretable Tree Ensemble Learning [7.868733904112288]
We show that when shallow decision trees are used as base learners, the ensemble learning algorithms can become inherently interpretable.
An interpretation algorithm is developed that converts the tree ensemble into the functional ANOVA representation with inherent interpretability.
Experiments on simulations and real-world datasets show that our proposed methods offer a better trade-off between model interpretation and predictive performance.
arXiv Detail & Related papers (2024-10-24T18:58:41Z) - Low-Cost Self-Ensembles Based on Multi-Branch Transformation and Grouped Convolution [20.103367702014474]
We propose a new low-cost ensemble learning to achieve high efficiency and classification performance.
For training, we employ knowledge distillation using the ensemble of the outputs as the teacher signal.
Experimental results show that our method achieves state-of-the-art classification accuracy and higher uncertainty estimation performance.
arXiv Detail & Related papers (2024-08-05T08:36:13Z) - Extension of Transformational Machine Learning: Classification Problems [0.0]
This study explores the application and performance of Transformational Machine Learning (TML) in drug discovery.
TML, a meta learning algorithm, excels in exploiting common attributes across various domains.
The drug discovery process, which is complex and time-consuming, can benefit greatly from the enhanced prediction accuracy.
arXiv Detail & Related papers (2023-08-07T07:34:18Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoost is a new boosting algorithm for probabilistic classifiers.
It uses the uncertainty of each training sample to determine the most challenging/uncertain ones.
It produces a sequence that progressively focuses on the samples found to have the highest uncertainty.
arXiv Detail & Related papers (2022-09-04T12:49:20Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
Variational autoencoders (VAE) are a powerful and widely-used class of generative models.
We introduce a new constrained objective based on the Cauchy-Schwarz divergence, which can be computed analytically for GMMs.
Our objective improves upon variational auto-encoding models in density estimation, unsupervised clustering, semi-supervised learning, and face analysis.
arXiv Detail & Related papers (2021-01-06T17:36:26Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.