A Mathematical Programming Approach to Optimal Classification Forests
- URL: http://arxiv.org/abs/2211.10502v3
- Date: Fri, 29 Nov 2024 12:48:55 GMT
- Title: A Mathematical Programming Approach to Optimal Classification Forests
- Authors: Víctor Blanco, Alberto Japón, Justo Puerto, Peter Zhang,
- Abstract summary: This paper introduces Weighted Optimal Classification Forests (WOCFs)
WOCFs take advantage of an optimal ensemble of decision trees to derive accurate and interpretable classifiers.
Overall, WOCFs complement existing methods such as CART, Optimal Classification Trees, Random Forests and XGBoost.
- Score: 1.0499611180329806
- License:
- Abstract: This paper introduces Weighted Optimal Classification Forests (WOCFs), a new family of classifiers that takes advantage of an optimal ensemble of decision trees to derive accurate and interpretable classifiers. We propose a novel mathematical optimization-based methodology which simultaneously constructs a given number of trees, each of them providing a predicted class for the observations in the feature space. The classification rule is derived by assigning to each observation its most frequently predicted class among the trees. We provide a mixed integer linear programming formulation (MIP) for the problem and several novel MIP strengthening / scaling techniques. We report the results of our computational experiments, from which we conclude that our method has equal or superior performance compared with state-of-the-art tree-based classification methods for small to medium-sized instances. We also present three real-world case studies showing that our methodology has very interesting implications in terms of interpretability. Overall, WOCFs complement existing methods such as CART, Optimal Classification Trees, Random Forests and XGBoost. In addition to its Pareto improvement on accuracy and interpretability, we also see unique properties emerging in terms of different trees focusing on different feature variables. This provides nontrivial improvement in interpretability and usability of the trained model in terms of counterfactual explanation. Thus, despite the apparent computational challenge of WOCFs that limit the size of the problems that can be efficiently solved with current MIP, this is an important research direction that can lead to qualitatively different insights for researchers and complement the toolbox of practitioners for high stakes problems.
Related papers
- Enriched Functional Tree-Based Classifiers: A Novel Approach Leveraging
Derivatives and Geometric Features [0.0]
This study introduces an advanced methodology for supervised classification by integrating Functional Data Analysis (FDA) with tree-based ensemble techniques for classifying high-dimensional time series.
arXiv Detail & Related papers (2024-09-26T12:57:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Multiclass Optimal Classification Trees with SVM-splits [1.5039745292757671]
We present a novel mathematical optimization-based methodology to construct tree-shaped classification rules for multiclass instances.
Our approach consists of building Classification Trees in which, except for the leaf nodes, the labels are temporarily left out and grouped into two classes by means of a SVM separating hyperplane.
arXiv Detail & Related papers (2021-11-16T18:15:56Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Strong Optimal Classification Trees [8.10995244893652]
We propose an intuitive flow-based MIO formulation for learning optimal binary classification trees.
Our formulation can accommodate side constraints to enable the design of interpretable and fair decision trees.
We show that our proposed approaches are 29 times faster than state-of-the-art MIO-based techniques.
arXiv Detail & Related papers (2021-03-29T21:40:58Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Learning Optimal Classification Trees: Strong Max-Flow Formulations [8.10995244893652]
We propose a flow-based MIP formulation for optimal binary classification trees with a stronger linear programming relaxation.
Our formulation presents an attractive decomposable structure. We exploit this structure and max-flow/min-cut duality to derive a Benders' decomposition method.
arXiv Detail & Related papers (2020-02-21T05:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.