論文の概要: HypperSteer: Hypothetical Steering and Data Perturbation in Sequence
Prediction with Deep Learning
- arxiv url: http://arxiv.org/abs/2011.02149v2
- Date: Fri, 20 Nov 2020 01:55:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 21:48:38.058671
- Title: HypperSteer: Hypothetical Steering and Data Perturbation in Sequence
Prediction with Deep Learning
- Title(参考訳): HypperSteer:ディープラーニングを用いたシーケンス予測における仮説的ステアリングとデータ摂動
- Authors: Chuan Wang and Kwan-Liu Ma
- Abstract要約: 本稿では,モデルに依存しない視覚解析ツールHypperSteerを提案する。
我々は、HypperSteerが患者データをステアリングして望ましい治療結果を得るのにどのように役立つかを示し、HypperSteerが他の実践シナリオの包括的ソリューションとして機能するかについて議論する。
- 参考スコア(独自算出の注目度): 30.40203268658035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Recurrent Neural Networks (RNN) continues to find success in predictive
decision-making with temporal event sequences. Recent studies have shown the
importance and practicality of visual analytics in interpreting deep learning
models for real-world applications. However, very limited work enables
interactions with deep learning models and guides practitioners to form
hypotheticals towards the desired prediction outcomes, especially for sequence
prediction. Specifically, no existing work has addressed the what-if analysis
and value perturbation along different time-steps for sequence outcome
prediction. We present a model-agnostic visual analytics tool, HypperSteer,
that steers hypothetical testing and allows users to perturb data for sequence
predictions interactively. We showcase how HypperSteer helps in steering
patient data to achieve desired treatment outcomes and discuss how HypperSteer
can serve as a comprehensive solution for other practical scenarios.
- Abstract(参考訳): ディープリカレントニューラルネットワーク(RNN)は、時間的イベントシーケンスによる予測的意思決定に成功し続けている。
近年の研究では、実世界の応用のためのディープラーニングモデルを解釈する上で、視覚分析の重要性と実用性を示している。
しかし、非常に限られた作業によってディープラーニングモデルとのインタラクションが可能になり、特にシーケンス予測のために、実践者が望ましい予測結果に向けて仮説を形成することができる。
具体的には、シーケンス結果予測の異なる時間ステップに沿って、何の分析と値摂動に対処する既存の研究は存在しない。
そこで我々は,モデルに依存しないビジュアル分析ツールであるhyppersteerを提案する。
我々は、HypperSteerが患者データをステアリングして望ましい治療結果を得るのにどのように役立つかを示し、HypperSteerが他の実践シナリオの包括的ソリューションとして機能するかについて議論する。
関連論文リスト
- Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
本稿では、時系列イベント予測を強化するアプローチであるFuture-Guided Learningを紹介する。
提案手法は,重要な事象を特定するために将来的なデータを解析する検出モデルと,これらの事象を現在のデータに基づいて予測する予測モデルである。
予測モデルと検出モデルの間に不一致が発生した場合、予測モデルはより実質的な更新を行う。
論文 参考訳(メタデータ) (2024-10-19T21:22:55Z) - An Introduction to Deep Survival Analysis Models for Predicting Time-to-Event Outcomes [5.257719744958367]
生存分析の分野では、時間から時間までの成果が広く研究されている。
Monographは、サバイバル分析のための、合理的に自己完結したモダンな導入を提供することを目指している。
論文 参考訳(メタデータ) (2024-10-01T21:29:17Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Convolutional Motif Kernel Networks [1.104960878651584]
我々のモデルは、小さなデータセットでしっかりと学習でき、関連する医療予測タスクで最先端のパフォーマンスを達成できることを示す。
提案手法はDNAおよびタンパク質配列に利用することができる。
論文 参考訳(メタデータ) (2021-11-03T15:06:09Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - Video Prediction via Example Guidance [156.08546987158616]
ビデオ予測タスクでは、将来のコンテンツとダイナミクスのマルチモーダルな性質を捉えることが大きな課題である。
本研究では,有効な将来状態の予測を効果的に行うための,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:57:24Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。