論文の概要: Leveraging Temporal Joint Depths for Improving 3D Human Pose Estimation
in Video
- arxiv url: http://arxiv.org/abs/2011.02172v1
- Date: Wed, 4 Nov 2020 08:23:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 22:24:38.801570
- Title: Leveraging Temporal Joint Depths for Improving 3D Human Pose Estimation
in Video
- Title(参考訳): 映像における3次元人物ポーズ推定における時間的関節深度の活用
- Authors: Naoki Kato, Hiroto Honda, Yusuke Uchida
- Abstract要約: 本稿では,映像の各フレームに3次元のポーズを推定し,時間的情報を考慮してそれを洗練することを提案する。
提案手法は, 接合深さのあいまいさを低減し, 3次元ポーズ推定精度を向上させる。
- 参考スコア(独自算出の注目度): 2.7501248535328306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness of the approaches to predict 3D poses from 2D poses
estimated in each frame of a video has been demonstrated for 3D human pose
estimation. However, 2D poses without appearance information of persons have
much ambiguity with respect to the joint depths. In this paper, we propose to
estimate a 3D pose in each frame of a video and refine it considering temporal
information. The proposed approach reduces the ambiguity of the joint depths
and improves the 3D pose estimation accuracy.
- Abstract(参考訳): 映像の各フレームで推定された2次元ポーズから3次元ポーズを予測する手法の有効性を3次元ポーズ推定に実証した。
しかし、人物の外観情報のない2Dポーズは、関節深度に関して非常に曖昧である。
本稿では,映像の各フレームにおける3次元ポーズを推定し,時間的情報を考慮して精錬することを提案する。
提案手法は, 関節奥行きの曖昧さを低減し, 3次元ポーズ推定精度を向上させる。
関連論文リスト
- SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
本研究では,3次元テクスチャメッシュを再構成し,スパースビュー画像に対する相対カメラのポーズを推定する新しい手法であるSpaRPを提案する。
SpaRPは2次元拡散モデルから知識を抽出し、それらを微調整し、スパースビュー間の3次元空間関係を暗黙的に推論する。
テクスチャ化されたメッシュを生成するのに、わずか20秒しかかからず、カメラは入力ビューにポーズする。
論文 参考訳(メタデータ) (2024-08-19T17:53:10Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space [14.81199315166042]
本研究では,多次元再投影と教師あり学習を混合した3次元人間のポーズ推定手法を提案する。
提案手法は,データセットHuman3.6Mの推定結果に基づいて,定性的にも定量的にも,多くの最先端手法より優れている。
論文 参考訳(メタデータ) (2022-06-04T00:51:00Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
本稿では,学習向きのみを用いて3次元ポーズを頑健に推定できる新しいPose Orientation Net(PONet)を提案する。
PONetは、局所的な画像証拠を利用して、これらの手足の3D方向を推定し、3Dポーズを復元する。
我々は,Human3.6M,MPII,MPI-INF-3DHP,3DPWを含む複数のデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-12-21T12:48:48Z) - PoseRN: A 2D pose refinement network for bias-free multi-view 3D human
pose estimation [21.51166171743293]
推定2次元ポーズにおける人間のバイアスを予測できる新しい2次元ポーズ改善ネットワークを提案する。
提案するポーズ改善ネットワークにより,推定された2次元ポーズにおける人間のバイアスを効率的に除去し,高精度なマルチビュー3次元ポーズ推定を実現することができる。
論文 参考訳(メタデータ) (2021-07-07T03:49:36Z) - Self-Attentive 3D Human Pose and Shape Estimation from Videos [82.63503361008607]
3D人間のポーズと形状推定のためのビデオベースの学習アルゴリズムを紹介します。
ビデオの時間情報を利用して自己着脱モジュールを提案する。
本手法を3DPW, MPI-INF-3DHP, Human3.6Mデータセット上で評価した。
論文 参考訳(メタデータ) (2021-03-26T00:02:19Z) - Graph and Temporal Convolutional Networks for 3D Multi-person Pose
Estimation in Monocular Videos [33.974241749058585]
本稿では, グラフ畳み込みネットワーク(GCN)と時間畳み込みネットワーク(TCN)を統合し, カメラ中心のマルチパーソナライズされた3Dポーズを頑健に推定するフレームワークを提案する。
特に,姿勢推定結果を改善するために,2次元ポーズ推定器の信頼度スコアを用いたヒューマンジョイントgcnを提案する。
2つのGCNが連携して空間的なフレーム回りの3Dポーズを推定し、ターゲットフレーム内の可視関節情報と骨情報の両方を使用して、人の一部または欠落した情報を推定します。
論文 参考訳(メタデータ) (2020-12-22T03:01:19Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
我々は,CNNによる信頼度の高い2次元ポーズ推定の最近の進歩を活用し,深度画像から人物の3次元ポーズを推定する。
提案手法は2つの公開データセットの精度と速度の両面で非常に競争力のある結果が得られる。
論文 参考訳(メタデータ) (2020-11-10T10:08:13Z) - Towards Generalization of 3D Human Pose Estimation In The Wild [73.19542580408971]
3DBodyTex.Poseは、3Dの人間のポーズ推定のタスクに対処するデータセットである。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
論文 参考訳(メタデータ) (2020-04-21T13:31:58Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A
Geometric Approach [76.10879433430466]
多視点画像と人手足に装着したIMUから3次元人間のポーズを推定する。
まず2つの信号から2Dのポーズを検出し、3D空間に持ち上げる。
単純な2段階のアプローチは、公開データセット上の大きなマージンによる最先端のエラーを低減する。
論文 参考訳(メタデータ) (2020-03-25T00:26:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。