論文の概要: Optimization of the lowest eigenvalue of a soft quantum ring
- arxiv url: http://arxiv.org/abs/2011.02257v1
- Date: Wed, 4 Nov 2020 12:54:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 07:33:31.082977
- Title: Optimization of the lowest eigenvalue of a soft quantum ring
- Title(参考訳): ソフト量子環の最小固有値の最適化
- Authors: Pavel Exner and Vladimir Lotoreichik
- Abstract要約: 自己随伴のSchr"odinger $H_mu$を差分式 $Delta -mu$ に関連付けて考える。
この問題は、$alpha$の積によって与えられる$mu_bot$と、最適な位置でサポートされているDirac$delta$-functionである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the self-adjoint two-dimensional Schr\"odinger operator $H_\mu$
associated with the differential expression $-\Delta -\mu$ describing a
particle exposed to an attractive interaction given by a measure $\mu$
supported in a closed curvilinear strip and having fixed transversal
one-dimensional profile measure $\mu_\bot$. This operator has nonempty negative
discrete spectrum and we obtain two optimization results for its lowest
eigenvalue. For the first one, we fix $\mu_\bot$ and maximize the lowest
eigenvalue with respect to shape of the curvilinear strip the optimizer in the
first problem turns out to be the annulus. We also generalize this result to
the situation which involves an additional perturbation of $H_\mu$ in the form
of a positive multiple of the characteristic function of the domain surrounded
by the curvilinear strip. Secondly, we fix the shape of the curvilinear strip
and minimize the lowest eigenvalue with respect to variation of $\mu_\bot$,
under the constraint that the total profile measure $\alpha >0$ is fixed. The
optimizer in this problem is $\mu_\bot$ given by the product of $\alpha$ and
the Dirac $\delta$-function supported at an optimal position.
- Abstract(参考訳): 偏微分式 $-\Delta -\mu$ に付随する自己随伴2次元シュル・オジンガー作用素 $H_\mu$ を考える。
この演算子は空でない負の離散スペクトルを持ち、最小の固有値に対する2つの最適化結果が得られる。
まず、$\mu_\bot$を固定し、最初の問題におけるオプティマイザの曲率帯の形に関して最小の固有値を最大化する。
また、この結果を、曲線のストリップに囲まれた領域の特性関数の正の倍という形で、さらに$H_\mu$の摂動を伴う状況に一般化する。
次に、全プロファイルが$\alpha >0$であるという制約の下で、曲線ストリップの形状を固定し、$\mu_\bot$の変動に関して最小の固有値を最小化する。
この問題のオプティマイザは$\alpha$の積によって与えられる$\mu_\bot$と、最適な位置でサポートされているDirac$\delta$-functionである。
関連論文リスト
- Conditional regression for the Nonlinear Single-Variable Model [4.565636963872865]
F(X):=f(Pi_gamma):mathbbRdto[0,rmlen_gamma]$ ここで$Pi_gamma: [0,rmlen_gamma]tomathbbRd$と$f:[0,rmlen_gamma]tomathbbR1$を考える。
条件回帰に基づく非パラメトリック推定器を提案し、$one$-dimensionalOptimical min-maxレートを実現できることを示す。
論文 参考訳(メタデータ) (2024-11-14T18:53:51Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - DIFF2: Differential Private Optimization via Gradient Differences for
Nonconvex Distributed Learning [58.79085525115987]
以前の研究でよく知られたユーティリティ境界は$widetilde O(d2/3/(nvarepsilon_mathrmDP)4/3)$である。
本稿では,差分プライベートフレームワークを構築した mphDIFF2 (DIFFerential private via DIFFs) という新しい差分プライベートフレームワークを提案する。
大域的な降下を持つ$mphDIFF2は$widetilde O(d2/3/(nvarepsilon_mathrmDP)4/3の効用を達成する
論文 参考訳(メタデータ) (2023-02-08T05:19:01Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Sharper Utility Bounds for Differentially Private Models [20.246768861331276]
最初の$mathcalObig (fracsqrtpnepsilonbig)$ 高確率過剰集団リスクは、差分プライベートアルゴリズムに縛られる。
新しいアルゴリズムm-NGPは、実データセット上での差分プライベートモデルの性能を改善する。
論文 参考訳(メタデータ) (2022-04-22T07:03:13Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Convergence Rate of the (1+1)-Evolution Strategy with Success-Based
Step-Size Adaptation on Convex Quadratic Functions [20.666734673282498]
1+1)-進化戦略(ES)と成功に基づくステップサイズ適応を一般凸二次関数で解析する。
1+1)-ES の収束速度は、一般凸二次函数上で明示的に厳密に導かれる。
論文 参考訳(メタデータ) (2021-03-02T09:03:44Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
truncated linear regression において、従属変数 $(A_i, y_i)_i$ は $y_i= A_irm T cdot x* + eta_i$ は固定された未知の興味ベクトルである。
目標は、$A_i$とノイズ分布に関するいくつかの好ましい条件の下で$x*$を回復することである。
我々は、$k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated sample。
論文 参考訳(メタデータ) (2020-07-29T00:31:34Z) - $\lambda$-Regularized A-Optimal Design and its Approximation by
$\lambda$-Regularized Proportional Volume Sampling [1.256413718364189]
本稿では,$lambda$-regularized $A$-optimal design problemについて検討し,$lambda$-regularized proportional volume sample algorithmを紹介する。
この問題は、リッジ回帰モデルにおける真の係数からリッジ回帰予測器の2乗誤差を最小化しようとする、リッジ回帰の最適設計から動機づけられている。
論文 参考訳(メタデータ) (2020-06-19T15:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。