論文の概要: Necessary and Sufficient Explanations in Abstract Argumentation
- arxiv url: http://arxiv.org/abs/2011.02414v1
- Date: Wed, 4 Nov 2020 17:12:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 22:51:03.636172
- Title: Necessary and Sufficient Explanations in Abstract Argumentation
- Title(参考訳): 抽象論における必要十分説明
- Authors: AnneMarie Borg and Floris Bex
- Abstract要約: フォーマルな議論に必要な説明と十分な説明について論じる。
必然性と十分性について研究する: 議論の(非受容性)に何(集合)の議論が必要か、あるいは十分か?
- 参考スコア(独自算出の注目度): 3.9849889653167208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we discuss necessary and sufficient explanations for formal
argumentation - the question whether and why a certain argument can be accepted
(or not) under various extension-based semantics. Given a framework with which
explanations for argumentation-based conclusions can be derived, we study
necessity and sufficiency: what (sets of) arguments are necessary or sufficient
for the (non-)acceptance of an argument?
- Abstract(参考訳): 本稿では,様々な拡張的意味論の下で,ある議論が受け入れられるか否か(あるいは受け入れられないのか)という,形式的議論に必要な説明と十分な説明について論じる。
議論に基づく結論を導出できるフレームワークが与えられたら、我々は必要性と十分性について研究する: 議論の(非)受容に何が必要か、あるいは十分か?
関連論文リスト
- Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
議論ベースのシステムは、意思決定プロセスをサポートしながら説明責任を欠くことが多い。
対実的・半実的な説明は解釈可能性のテクニックである。
本稿では,制約の弱いArgumentation Frameworkにおいて,逆ファクトおよび半ファクトのクエリを符号化可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T07:27:27Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Many-valued Argumentation, Conditionals and a Probabilistic Semantics
for Gradual Argumentation [3.9571744700171743]
本稿では,段階的議論の意味論の多値優先的解釈を定義するための一般的な手法を提案する。
概念の証明として、有限値の場合、条件付き推論に対してAnswer set Programmingアプローチが提案される。
また,多値条件セマンティクスに基づく漸進的議論の確率論的セマンティクスを開発し,論じる。
論文 参考訳(メタデータ) (2022-12-14T22:10:46Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Annotating Implicit Reasoning in Arguments with Causal Links [34.77514899468729]
議論知識の形で暗黙の知識を特定することに注力する。
コンシークエンススキームのArgumentに着想を得て,そのような議論の知識を表現するための半構造化テンプレートを提案する。
クラウドソーシングによる高品質な暗黙的推論の収集とフィルタリング方法を示す。
論文 参考訳(メタデータ) (2021-10-26T13:28:53Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z) - Contrastive Explanations for Argumentation-Based Conclusions [5.1398743023989555]
フォーマルな議論の対照的な説明について論じる。
対照的な説明が意味のある条件と、議論によって暗黙のホイルが明確になることを示す。
論文 参考訳(メタデータ) (2021-07-07T15:00:47Z) - Reinforcement Learning-based Dialogue Guided Event Extraction to Exploit
Argument Relations [70.35379323231241]
本稿では、イベント引数の関係を明示的に活用することで、イベント抽出のためのより良いアプローチを提案する。
我々は増補学習と漸進学習を用いて、多回反復的なプロセスを通じて複数の引数を抽出する。
実験の結果,提案手法は7つの最先端イベント抽出法より一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2021-06-23T13:24:39Z) - Exploring Discourse Structures for Argument Impact Classification [48.909640432326654]
本稿では、文脈経路に沿った2つの議論間の談話関係が、議論の説得力を特定する上で不可欠な要素であることを実証的に示す。
本研究では,文レベルの構造情報を大規模言語モデルから派生した文脈的特徴に注入・融合するDisCOCを提案する。
論文 参考訳(メタデータ) (2021-06-02T06:49:19Z) - Thinking About Causation: A Causal Language with Epistemic Operators [58.720142291102135]
我々はエージェントの状態を表すことで因果モデルの概念を拡張した。
対象言語の側面には、知識を表現する演算子や、新しい情報を観察する行為が追加されます。
我々は、論理の健全かつ完全な公理化を提供し、このフレームワークと因果的チーム意味論との関係について論じる。
論文 参考訳(メタデータ) (2020-10-30T12:16:45Z) - Extracting Implicitly Asserted Propositions in Argumentation [8.20413690846954]
本研究では,議論において暗黙的に主張された命題,報告された言論,命令文を抽出する手法について検討した。
本研究は,これらのレトリック装置の論証マイニングとセマンティクスに関する今後の研究について報告する。
論文 参考訳(メタデータ) (2020-10-06T12:03:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。