論文の概要: GPR-based Model Reconstruction System for Underground Utilities Using
GPRNet
- arxiv url: http://arxiv.org/abs/2011.02635v3
- Date: Tue, 18 May 2021 16:06:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 13:01:00.096096
- Title: GPR-based Model Reconstruction System for Underground Utilities Using
GPRNet
- Title(参考訳): GPRNetを用いた地下事業用モデル再構築システム
- Authors: Jinglun Feng, Liang Yang, Ejup Hoxha, Diar Sanakov, Stanislav
Sotnikov, Jizhong Xiao
- Abstract要約: 地中貫入レーダ(GPR)は、地中物を検出し、位置を特定するための最も重要な非破壊評価(NDE)機器の一つである。
従来の研究では、GPR画像に基づく特徴検出のみに焦点が当てられており、粗いGPR測定を処理して、より詳細な地下物体の3Dモデルを再構築することは不可能である。
本稿では,GPRデータを収集し,地下ユーティリティをローカライズし,地下オブジェクトの高密度点クラウドモデルを再構築する,新しいロボットシステムを提案する。
- 参考スコア(独自算出の注目度): 12.334006660346935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ground Penetrating Radar (GPR) is one of the most important non-destructive
evaluation (NDE) instruments to detect and locate underground objects (i.e.,
rebars, utility pipes). Many previous researches focus on GPR image-based
feature detection only, and none can process sparse GPR measurements to
successfully reconstruct a very fine and detailed 3D model of underground
objects for better visualization. To address this problem, this paper presents
a novel robotic system to collect GPR data, localize the underground utilities,
and reconstruct the underground objects' dense point cloud model. This system
is composed of three modules: 1) visual-inertial-based GPR data collection
module, which tags the GPR measurements with positioning information provided
by an omnidirectional robot; 2) a deep neural network (DNN) migration module to
interpret the raw GPR B-scan image into a cross-section of object model; 3) a
DNN-based 3D reconstruction module, i.e., GPRNet, to generate underground
utility model with the fine 3D point cloud. In this paper, both the
quantitative and qualitative experiment results verify our method that can
generate a dense and complete point cloud model of pipe-shaped utilities based
on a sparse input, i.e., GPR raw data incompleteness and various noise. The
experiment results on synthetic data and field test data further support the
effectiveness of our approach.
- Abstract(参考訳): 地中レーダ(gpr)は、地下の物体(リバー、ユーティリティパイプ)を検知・発見するための最も重要な非破壊評価(nde)機器の1つである。
これまでの多くの研究は、GPR画像に基づく特徴検出のみに焦点を当てており、より詳細な地下物体の非常に微細で詳細な3Dモデルの再構築を成功させるために、粗いGPR測定を処理できない。
そこで本稿では,GPRデータを収集し,地下ユーティリティをローカライズし,地下オブジェクトの高密度点クラウドモデルを再構築する,新しいロボットシステムを提案する。
このシステムは3つのモジュールから構成される。
1 視覚慣性に基づくGPRデータ収集モジュールで、全方向ロボットの位置情報をGPR計測にタグ付けする。
2) 生のgpr b-scan画像をオブジェクトモデルの断面に解釈するためのディープニューラルネットワーク(dnn)マイグレーションモジュール
3)DNNベースの3D再構成モジュール、すなわちGPRNetは、細かな3Dポイントクラウドを持つ地下ユーティリティモデルを生成する。
本稿では,本手法を定量的・定性的に検証し,パイプ状ユーティリティの濃密かつ完全点クラウドモデル,すなわちgpr生データ不完全性および各種ノイズの少ない入力に基づいて生成する手法について検証する。
実験の結果, 合成データとフィールドテストデータにより, 本手法の有効性がさらに向上した。
関連論文リスト
- Underground Mapping and Localization Based on Ground-Penetrating Radar [11.737279515161505]
本稿では,GPRセンサからのBスキャン画像を利用して,深部畳み込みニューラルネットワークに基づくパラボラ信号検出ネットワークを提案する。
検出されたキーポイントは、元のGPR Bスキャン画像をオブジェクトモデルの断面として解釈するのに使用されるパラボラ曲線を正確に適合させるのに役立つ。
未知の場所では、GPRのAスキャンデータを使用して、構築された地図内の対応するAスキャンデータとマッチングし、その位置をピンポイントして、モデルによる地図構築の精度を検証する。
論文 参考訳(メタデータ) (2024-09-24T20:26:16Z) - PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - Multi-View Fusion and Distillation for Subgrade Distresses Detection
based on 3D-GPR [19.49863426864145]
本稿では,3D-GPRデータからの多視点情報を活用することで,下級災害検知タスクの新たな手法を提案する。
マルチビューGPRデータセットを最適に活用するための新しいtextbfMulti-textbfView textbfVusion と textbfDistillation フレームワーク textbfGPR-MVFD を開発した。
論文 参考訳(メタデータ) (2023-08-09T08:06:28Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
本稿では,計算資源の割り当ての観点から,局所的な点集合体を再考する。
最も単純な柱ベースのモデルは、精度とレイテンシの両方を考慮して驚くほどよく機能することがわかった。
本研究は,3次元物体検出の高性能化のために,詳細な幾何学的モデリングが不可欠である,という一般的な直観に挑戦する。
論文 参考訳(メタデータ) (2023-05-08T17:59:14Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Underground Diagnosis Based on GPR and Learning in the Model Space [17.738464689511773]
地中レーダ(GPR)はパイプライン検出や地下診断に広く用いられている。
本稿では,モデル空間における学習に基づくGPR Bスキャン画像診断手法を提案する。
論文 参考訳(メタデータ) (2022-11-25T07:28:27Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
本稿では,CAGroup3Dという新しい2段階完全スパース3Dオブジェクト検出フレームワークを提案する。
提案手法は,まず,オブジェクト表面のボクセル上でのクラス認識型局所群戦略を活用することによって,高品質な3D提案を生成する。
不正なボクセルワイドセグメンテーションにより欠落したボクセルの特徴を回復するために,完全にスパースな畳み込み型RoIプールモジュールを構築した。
論文 参考訳(メタデータ) (2022-10-09T13:38:48Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
本稿では,点雲からの正確な3次元物体検出のための投票型3次元検出器RBGNetフレームワークを提案する。
決定された光線群を用いて物体表面上の点方向の特徴を集約する。
ScanNet V2 と SUN RGB-D による最先端の3D 検出性能を実現する。
論文 参考訳(メタデータ) (2022-04-05T14:42:57Z) - Robotic Inspection and 3D GPR-based Reconstruction for Underground
Utilities [11.601407791322327]
地中貫入レーダ (GPR) は、地中物体を検査・調査するための有効な非破壊評価(NDE)装置である。
GPRデータ収集の現在のプラクティスは、事前にマークされたグリッド線に沿ってGPRカートを動かすために、人間のインスペクタを必要とする。
本稿では,GPRデータの収集,GPRデータの解釈,地下ユーティリティのローカライズ,地下オブジェクトの高密度点雲モデルの再構築と可視化を行う新しいロボットシステムを提案する。
論文 参考訳(メタデータ) (2021-06-03T14:58:49Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。