論文の概要: Process Model Forecasting Using Time Series Analysis of Event Sequence
Data
- arxiv url: http://arxiv.org/abs/2105.01092v1
- Date: Mon, 3 May 2021 18:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-05 12:45:52.957986
- Title: Process Model Forecasting Using Time Series Analysis of Event Sequence
Data
- Title(参考訳): イベントシーケンスデータの時系列解析によるプロセスモデル予測
- Authors: Johannes De Smedt, Anton Yeshchenko, Artem Polyvyanyy, Jochen De
Weerdt, Jan Mendling
- Abstract要約: 過去のイベントデータからプロセスモデル全体を予測する手法を開発しています。
本実装は,実世界のイベントログデータに対する手法の精度を示す。
- 参考スコア(独自算出の注目度): 0.23099144596725568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Process analytics is the field focusing on predictions for individual process
instances or overall process models. At the instance level, various novel
techniques have been recently devised, tackling next activity, remaining time,
and outcome prediction. At the model level, there is a notable void. It is the
ambition of this paper to fill this gap. To this end, we develop a technique to
forecast the entire process model from historical event data. A forecasted
model is a will-be process model representing a probable future state of the
overall process. Such a forecast helps to investigate the consequences of drift
and emerging bottlenecks. Our technique builds on a representation of event
data as multiple time series, each capturing the evolution of a behavioural
aspect of the process model, such that corresponding forecasting techniques can
be applied. Our implementation demonstrates the accuracy of our technique on
real-world event log data.
- Abstract(参考訳): プロセス分析は、個々のプロセスインスタンスまたは全体プロセスモデルに対する予測に焦点を当てた分野である。
事例レベルでは、様々な新しいテクニックが最近開発され、次の活動、残り時間、結果予測に対処している。
モデルレベルでは、注目すべき空白があります。
このギャップを埋めるのはこの論文の野心である。
この目的のために,過去のイベントデータからプロセスモデル全体を予測する手法を開発した。
予測されたモデルは、プロセス全体の将来の可能性を表すウィル・ベ・プロセスモデルである。
このような予測は、ドリフトと新興ボトルネックの結果を調べるのに役立つ。
本手法は,複数の時系列としてイベントデータの表現に基づいて,プロセスモデルの振る舞い的側面の進化を捉え,対応する予測手法を適用する。
本実装は,実世界のイベントログデータに対する手法の精度を示す。
関連論文リスト
- Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Avoiding Post-Processing with Event-Based Detection in Biomedical
Signals [69.34035527763916]
学習対象としてイベントを直接扱うイベントベースのモデリングフレームワークを提案する。
イベントベースのモデリング(後処理なし)は、広範囲な後処理を伴うエポックベースのモデリングと同等以上のパフォーマンスを示す。
論文 参考訳(メタデータ) (2022-09-22T13:44:13Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
グラフニューラルネットワークとマーク付き時間点プロセス(MTPP)を組み合わせた新しいモデルを提案する。
実験では,モデルの精度と訓練効率の両面から,モデルの優れた性能を実証した。
論文 参考訳(メタデータ) (2022-05-21T15:30:25Z) - Event Log Sampling for Predictive Monitoring [0.3425341633647624]
本稿では,予測モデルのためのトレーニングプロセスインスタンスのサンプリングを可能にするインスタンス選択手法を提案する。
本手法は,次の活動予測法において,信頼性の高い予測精度を維持しつつ,トレーニング速度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-04T13:36:48Z) - How do I update my model? On the resilience of Predictive Process
Monitoring models to change [15.29342790344802]
予測プロセスモニタリング技術は通常、過去のプロセス実行に基づいて予測モデルを構築し、それを新しい進行中のケースの将来を予測するために使用します。
これにより、予測的プロセスモニタリングは、実際の環境で動作するプロセスの変動に対処するには厳格すぎる。
予測モデルの定期的な再検討や漸進的な構築を可能にする3つの戦略の活用を評価した。
論文 参考訳(メタデータ) (2021-09-08T08:50:56Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Text-Aware Predictive Monitoring of Business Processes [0.8602553195689513]
我々は,Long Short-Term Memory(LSTM)ニューラルネットワークと自然言語モデルに基づく,新しいテキスト認識プロセス予測モデルを開発した。
提案モデルは,次のイベントのアクティビティとタイムスタンプ,結果,実行中のプロセスインスタンスのサイクル時間を予測するために,イベントデータのカテゴリ的,数値的,テキスト的属性を考慮に入れることができる。
実験により、テキストデータを含むシミュレーションおよび実世界のイベントログにおいて、テキスト認識モデルが最先端プロセス予測手法を上回ることができることを示した。
論文 参考訳(メタデータ) (2021-04-20T13:51:27Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Predictive Process Model Monitoring using Recurrent Neural Networks [2.4029798593292706]
本稿では,予測モニタリングの中間地点となるプロセス・アズ・ムーブズ(PAM)について紹介する。
プロセス実行トレースのさまざまなウィンドウにおけるアクティビティ間の宣言的なプロセス制約をキャプチャすることで実現します。
高次元入力に適した様々なリカレントニューラルネットワークトポロジを使用して、ウィンドウをタイムステップとしてプロセスモデルの進化をモデル化する。
論文 参考訳(メタデータ) (2020-11-05T13:57:33Z) - Cause vs. Effect in Context-Sensitive Prediction of Business Process
Instances [0.440401067183266]
本稿では、次の事象の原因または影響のコンテキストの問題と、次の事象の予測への影響について論じる。
確率モデルに関する従来の研究を活用し、動的ベイズネットワーク技術を開発した。
本稿では,本手法を2つの実生活データセットを用いて評価し,予測プロセス監視分野の他の手法とベンチマークする。
論文 参考訳(メタデータ) (2020-07-15T08:58:15Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。