Cross-Modal Self-Attention Distillation for Prostate Cancer Segmentation
- URL: http://arxiv.org/abs/2011.03908v1
- Date: Sun, 8 Nov 2020 06:19:13 GMT
- Title: Cross-Modal Self-Attention Distillation for Prostate Cancer Segmentation
- Authors: Guokai Zhang, Xiaoang Shen, Ye Luo, Jihao Luo, Zeju Wang, Weigang
Wang, Binghui Zhao, Jianwei Lu
- Abstract summary: How to use the multi-modal image features more efficiently is still a challenging problem in the field of medical image segmentation.
We develop a cross-modal self-attention distillation network by fully exploiting the encoded information of the intermediate layers from different modalities.
We evaluate our model in five-fold cross-validation on 358 MRI with biopsy confirmed.
- Score: 1.630747108038841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of the prostate cancer from the multi-modal magnetic
resonance images is of critical importance for the initial staging and
prognosis of patients. However, how to use the multi-modal image features more
efficiently is still a challenging problem in the field of medical image
segmentation. In this paper, we develop a cross-modal self-attention
distillation network by fully exploiting the encoded information of the
intermediate layers from different modalities, and the extracted attention maps
of different modalities enable the model to transfer the significant spatial
information with more details. Moreover, a novel spatial correlated feature
fusion module is further employed for learning more complementary correlation
and non-linear information of different modality images. We evaluate our model
in five-fold cross-validation on 358 MRI with biopsy confirmed. Extensive
experiment results demonstrate that our proposed network achieves
state-of-the-art performance.
Related papers
- FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Uncertainty-Aware Multi-Parametric Magnetic Resonance Image Information
Fusion for 3D Object Segmentation [12.361668672097753]
We propose an uncertainty-aware multi-parametric MR image feature fusion method to fully exploit the information for enhanced 3D image segmentation.
Our proposed method achieves better segmentation performance when compared to existing models.
arXiv Detail & Related papers (2022-11-16T09:16:52Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.