論文の概要: EDEN: Multimodal Synthetic Dataset of Enclosed GarDEN Scenes
- arxiv url: http://arxiv.org/abs/2011.04389v2
- Date: Tue, 10 Nov 2020 20:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 01:27:36.166713
- Title: EDEN: Multimodal Synthetic Dataset of Enclosed GarDEN Scenes
- Title(参考訳): EDEN: 閉ざされたガーデンシーンのマルチモーダル合成データセット
- Authors: Hoang-An Le, Thomas Mensink, Partha Das, Sezer Karaoglu, Theo Gevers
- Abstract要約: このデータセットには、100以上の園芸モデルから取得した300万以上の画像が含まれている。
各画像には、セマンティックセグメンテーション、深さ、表面正規化、固有色、光学フローなど、様々な低レベル/高レベルの視覚変調が注釈付けされている。
コンピュータビジョンにおける2つの重要な課題である, セマンティックセグメンテーションと単眼深度予測の最先端手法に関する実験結果から, 未構造化自然シーンのデータセットに対する事前学習深度ネットワークの効果が示唆された。
- 参考スコア(独自算出の注目度): 21.695100437184507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large-scale datasets for outdoor scenes are mostly designed for
urban driving problems. The scenes are highly structured and semantically
different from scenarios seen in nature-centered scenes such as gardens or
parks. To promote machine learning methods for nature-oriented applications,
such as agriculture and gardening, we propose the multimodal synthetic dataset
for Enclosed garDEN scenes (EDEN). The dataset features more than 300K images
captured from more than 100 garden models. Each image is annotated with various
low/high-level vision modalities, including semantic segmentation, depth,
surface normals, intrinsic colors, and optical flow. Experimental results on
the state-of-the-art methods for semantic segmentation and monocular depth
prediction, two important tasks in computer vision, show positive impact of
pre-training deep networks on our dataset for unstructured natural scenes. The
dataset and related materials will be available at
https://lhoangan.github.io/eden.
- Abstract(参考訳): 屋外シーン向けのマルチモーダル大規模データセットは、主に都市運転問題のために設計されている。
シーンは、庭園や公園のような自然中心のシーンに見られるシナリオと非常に構造的で意味的に異なる。
農業やガーデニングといった自然指向の応用のための機械学習手法を促進するために,エンクローズドガーデンシーン(eden)のためのマルチモーダル合成データセットを提案する。
データセットには、100以上の園芸モデルから取得した300万以上の画像が含まれている。
各画像には、セマンティクスセグメンテーション、深さ、表面の正常性、内在色、光学フローなど、様々な低レベル・高レベルの視覚モダリティがアノテートされる。
コンピュータビジョンにおける2つの重要な課題である, セマンティックセグメンテーションと単眼深度予測の最先端手法に関する実験結果は, 未構造化自然シーンのデータセットに対する事前学習深度ネットワークの効果を示す。
データセットと関連資料はhttps://lhoangan.github.io/eden.com/で入手できる。
関連論文リスト
- WayveScenes101: A Dataset and Benchmark for Novel View Synthesis in Autonomous Driving [4.911903454560829]
WayveScenes101は、新しいビュー合成において、コミュニティが技術の状態を前進させるのを助けるために設計されたデータセットである。
データセットは、幅広い環境条件と運転シナリオにわたる101の運転シーンで構成されている。
論文 参考訳(メタデータ) (2024-07-11T08:29:45Z) - 360 in the Wild: Dataset for Depth Prediction and View Synthesis [66.58513725342125]
大規模な360$circ$ビデオデータセットを野放しに導入する。
このデータセットはインターネットから慎重に取り除かれ、世界中で様々な場所から収集されている。
データセットを構成する25K画像のそれぞれに、それぞれのカメラのポーズと深さマップが提供される。
論文 参考訳(メタデータ) (2024-06-27T05:26:38Z) - Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation [6.635604919499181]
森林調査のための大規模航空データセットを新たに導入する。
現実世界と仮想的な自然環境の記録も含んでいる。
地域の森林破壊度を評価するための枠組みを開発する。
論文 参考訳(メタデータ) (2024-03-11T11:26:44Z) - SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation
for Novel View Synthesis from a Single Image [60.52991173059486]
単一画像からの新規ビュー合成のためのシーン適応型階層型多面体画像表現であるSAMPlingを紹介する。
提案手法は,KITTIデータセット上の単一画像を用いて,大規模非有界屋外シーンにおいてかなりの性能向上を示す。
論文 参考訳(メタデータ) (2023-09-12T15:33:09Z) - NPF-200: A Multi-Modal Eye Fixation Dataset and Method for
Non-Photorealistic Videos [51.409547544747284]
NPF-200は、視線を固定した純粋にフォトリアリスティックでないビデオの大規模なマルチモーダルデータセットである。
私たちは一連の分析を行い、このタスクについてより深い洞察を得ます。
NPSNetと呼ばれる広帯域周波数対応マルチモーダル非フォトリアリスティックサリエンシ検出モデルを提案する。
論文 参考訳(メタデータ) (2023-08-23T14:25:22Z) - Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene
Scale and Realism Tradeoffs for ObjectGoal Navigation [70.82403156865057]
本研究では,合成3次元シーン・データセット・スケールとリアリズムが,オブジェクトの探索とナビゲートを行う具体的エージェントの訓練作業に与える影響について検討する。
我々の実験によると、我々の小規模データセットで訓練されたエージェントは、はるかに大きなデータセットで訓練されたエージェントと一致するか、より優れています。
論文 参考訳(メタデータ) (2023-06-20T05:07:23Z) - VDD: Varied Drone Dataset for Semantic Segmentation [9.581655974280217]
7つのクラスにまたがる400の高解像度画像の大規模なラベル付きコレクションをリリースする。
このデータセットは、様々なカメラアングルから撮影され、様々な照明条件の下で都市、工業、農村、自然のエリアで様々なシーンを特徴としている。
私たちは、ドローンデータセットをベースラインとして7つの最先端モデルをトレーニングします。
論文 参考訳(メタデータ) (2023-05-23T02:16:14Z) - PanDepth: Joint Panoptic Segmentation and Depth Completion [19.642115764441016]
本稿では,RGB画像とスパース深度マップを用いたマルチタスクモデルを提案する。
本モデルでは,完全な深度マップの予測に成功し,各入力フレームに対してセマンティックセグメンテーション,インスタンスセグメンテーション,パノプティックセグメンテーションを行う。
論文 参考訳(メタデータ) (2022-12-29T05:37:38Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort [117.41383937100751]
現在のディープネットワークは、大規模なデータセットのトレーニングの恩恵を受ける、非常にデータハングリーです。
GAN潜入コードがどのようにデコードされ、イメージのセマンティックセグメンテーションを生成するかを示す。
これらの生成されたデータセットは、実際のデータセットと同じように、コンピュータビジョンアーキテクチャのトレーニングに使用できます。
論文 参考訳(メタデータ) (2021-04-13T20:08:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。