論文の概要: Simultaneous Speech-to-Speech Translation System with Neural Incremental
ASR, MT, and TTS
- arxiv url: http://arxiv.org/abs/2011.04845v2
- Date: Wed, 11 Nov 2020 09:25:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 07:12:44.766828
- Title: Simultaneous Speech-to-Speech Translation System with Neural Incremental
ASR, MT, and TTS
- Title(参考訳): ニューラルインクリメンタルASR, MT, TTSを用いた同時音声音声合成システム
- Authors: Katsuhito Sudoh, Takatomo Kano, Sashi Novitasari, Tomoya Yanagita,
Sakriani Sakti, Satoshi Nakamura
- Abstract要約: このシステムは、自動音声認識(ASR)、機械翻訳(MT)、音声合成(TTS)の3つの完全インクリメンタルニューラルネットワークモジュールで構成されている。
システムのEar-Voice Spanにおける全体的なレイテンシと,モジュールレベルのパフォーマンスについて検討した。
- 参考スコア(独自算出の注目度): 26.213705952403743
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a newly developed, simultaneous neural speech-to-speech
translation system and its evaluation. The system consists of three
fully-incremental neural processing modules for automatic speech recognition
(ASR), machine translation (MT), and text-to-speech synthesis (TTS). We
investigated its overall latency in the system's Ear-Voice Span and speaking
latency along with module-level performance.
- Abstract(参考訳): 本稿では,ニューラル音声と音声の同時翻訳システムとその評価について述べる。
このシステムは、自動音声認識(ASR)、機械翻訳(MT)、音声合成(TTS)の3つの完全インクリメンタルニューラルネットワークモジュールで構成されている。
システムのEar-Voice Spanにおける全体的なレイテンシと,モジュールレベルのパフォーマンスについて検討した。
関連論文リスト
- On the Problem of Text-To-Speech Model Selection for Synthetic Data Generation in Automatic Speech Recognition [31.58289343561422]
合成データ生成の範囲内で, 5種類のTSデコーダアーキテクチャを比較し, CTCに基づく音声認識学習への影響を示す。
データ生成における自己回帰復号法は,非自己回帰復号法よりも優れており,TTS一般化能力を定量化するためのアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-31T09:37:27Z) - DiariST: Streaming Speech Translation with Speaker Diarization [53.595990270899414]
本稿では,最初のストリーミングSTとSDソリューションであるDiariSTを提案する。
ニューラルトランスデューサベースのストリーミングSTシステム上に構築され、トークンレベルのシリアライズされた出力トレーニングとtベクタを統合している。
重なり合う音声のストリーミング推論を行いながら,Whisperに基づくオフラインシステムと比較して強いSTとSD能力を実現する。
論文 参考訳(メタデータ) (2023-09-14T19:33:27Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
我々は、YouTubeやポッドキャストから現実の音声を使ってTSシステムを訓練する。
最近のText-to-Speechアーキテクチャは、複数のコード生成とモノトニックアライメントのために設計されている。
近年のテキスト・トゥ・スペーチ・アーキテクチャは,いくつかの客観的・主観的尺度において,既存のTSシステムより優れていることを示す。
論文 参考訳(メタデータ) (2023-02-08T17:34:32Z) - TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation [61.564874831498145]
TranSpeechは、両側摂動を伴う音声から音声への翻訳モデルである。
我々は,非自己回帰S2ST手法を構築し,繰り返しマスキングを行い,単位選択を予測する。
TranSpeechは推論遅延を大幅に改善し、自動回帰技術よりも最大21.4倍のスピードアップを実現している。
論文 参考訳(メタデータ) (2022-05-25T06:34:14Z) - Enhanced Direct Speech-to-Speech Translation Using Self-supervised
Pre-training and Data Augmentation [76.13334392868208]
直接音声音声変換(S2ST)モデルは、データ不足の問題に悩まされる。
本研究では,この課題に対処するために,ラベルのない音声データとデータ拡張を用いた自己教師付き事前学習について検討する。
論文 参考訳(メタデータ) (2022-04-06T17:59:22Z) - Unsupervised Text-to-Speech Synthesis by Unsupervised Automatic Speech
Recognition [60.84668086976436]
教師なし音声合成システム(TTS)は、言語中の任意の文章に対応する音声波形を生成することを学習する。
本稿では、教師なし自動音声認識(ASR)の最近の進歩を活用して、教師なしTSシステムを提案する。
教師なしシステムでは、7つの言語で約10~20時間の音声で教師付きシステムに匹敵する性能を達成できる。
論文 参考訳(メタデータ) (2022-03-29T17:57:53Z) - Voice Filter: Few-shot text-to-speech speaker adaptation using voice
conversion as a post-processing module [16.369219400819134]
最先端の音声合成システム(TTS)は、高品質な合成音声を生成するために、数時間の音声データを記録する必要がある。
トレーニングデータの量を減らす場合、標準のTSモデルは音声品質と知性劣化に悩まされる。
本稿では,ターゲット話者からの音声を1分以内で処理するVoice Filterという,非常に低リソースなTTS手法を提案する。
論文 参考訳(メタデータ) (2022-02-16T16:12:21Z) - Incremental Speech Synthesis For Speech-To-Speech Translation [23.951060578077445]
本稿では,TSモデルの逐次合成性能の向上に焦点をあてる。
プレフィックスに基づく単純なデータ拡張戦略により、インクリメンタルTS品質を改善してオフラインパフォーマンスにアプローチすることが可能になります。
本稿では,S2STアプリケーションに適したレイテンシメトリクスを提案し,このコンテキストにおける遅延低減手法について検討する。
論文 参考訳(メタデータ) (2021-10-15T17:20:28Z) - Emphasis control for parallel neural TTS [8.039245267912511]
音声信号によって伝達される意味情報は、韻律の局所的な変化に強く影響される。
近年のパラレル・ニューラルテキスト・トゥ・音声(TTS)法は,高性能を維持しつつ高い忠実度で音声を生成することができる。
本稿では,重心変化に対応する潜在空間を学習することにより,韻律強調制御のための階層型並列型ニューラルネットワークTSシステムを提案する。
論文 参考訳(メタデータ) (2021-10-06T18:45:39Z) - Advances in Speech Vocoding for Text-to-Speech with Continuous
Parameters [2.6572330982240935]
本稿では,連続的なボコーダにおいて,全ての特徴が連続的であり,フレキシブルな音声合成システムを示す新しい手法を提案する。
位相歪みに基づく新しい連続雑音マスキングを提案し,残音の知覚的影響を排除した。
双方向長短期記憶 (LSTM) とゲートリカレント単位 (GRU) について検討し, 連続パラメータのモデル化に応用した。
論文 参考訳(メタデータ) (2021-06-19T12:05:01Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。