論文の概要: Objective Diagnosis for Histopathological Images Based on Machine
Learning Techniques: Classical Approaches and New Trends
- arxiv url: http://arxiv.org/abs/2011.05790v1
- Date: Tue, 10 Nov 2020 07:31:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 08:34:26.019724
- Title: Objective Diagnosis for Histopathological Images Based on Machine
Learning Techniques: Classical Approaches and New Trends
- Title(参考訳): 機械学習技術に基づく病理画像の客観的診断:古典的アプローチと新しい動向
- Authors: Naira Elazab, Hassan Soliman, Shaker El-Sappagh, S. M. Riazul Islam,
and Mohammed Elmogy
- Abstract要約: 病理組織像は顕微鏡で撮影され、多くの疾患を特定し、調査し、分類する。
病理組織像の解析は、疾患の診断を支援する多種多様かつ関連する研究領域である。
本稿では, 組織像解析に応用された従来の深層学習技術について概観する。
- 参考スコア(独自算出の注目度): 0.33554367023486936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathology refers to the examination by a pathologist of biopsy samples.
Histopathology images are captured by a microscope to locate, examine, and
classify many diseases, such as different cancer types. They provide a detailed
view of different types of diseases and their tissue status. These images are
an essential resource with which to define biological compositions or analyze
cell and tissue structures. This imaging modality is very important for
diagnostic applications. The analysis of histopathology images is a prolific
and relevant research area supporting disease diagnosis. In this paper, the
challenges of histopathology image analysis are evaluated. An extensive review
of conventional and deep learning techniques which have been applied in
histological image analyses is presented. This review summarizes many current
datasets and highlights important challenges and constraints with recent deep
learning techniques, alongside possible future research avenues. Despite the
progress made in this research area so far, it is still a significant area of
open research because of the variety of imaging techniques and disease-specific
characteristics.
- Abstract(参考訳): 病理組織学は、生検標本の病理学者による検査を指す。
病理像は顕微鏡で撮影され、がんの種類など多くの疾患を特定し、調査し、分類する。
様々な種類の病気とその組織状態の詳細な観察を提供する。
これらの画像は、生物学的組成を定義したり、細胞や組織構造を解析するための必須資源である。
このイメージングモダリティは診断応用において非常に重要である。
病理組織像の解析は、疾患診断を支える多種多様な研究領域である。
本稿では,病理組織像解析の課題を評価する。
組織像解析に応用された従来型および深層学習技術の広範なレビューを行った。
このレビューは、現在の多くのデータセットを要約し、将来の研究方法とともに、最近のディープラーニング技術で重要な課題と制約を強調する。
これまでの研究分野の進歩にもかかわらず、画像技術や疾患特有の特徴が多種多様であることから、まだオープン研究の重要領域である。
関連論文リスト
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework [43.453943987647015]
医学的な視覚言語事前訓練は研究の最前線として現れ、ゼロショットの病理診断を可能にしている。
バイオメディカルテキストの複雑なセマンティクスのため、現在の方法では、医学的画像と、非構造化レポートの重要な病理学的所見の整合に苦慮している。
これは、大きな言語モデルと医療専門家に相談することで達成される。
我々の研究は、近年の手法の精度を最大8.56%まで改善し、17.26%を目に見えるカテゴリーで改善した。
論文 参考訳(メタデータ) (2024-03-12T13:18:22Z) - On Image Search in Histopathology [0.0]
病理組織学における画像検索技術の最近の展開について概説する。
本研究は, 画像検索の効率, 高速, 効率的な手法を求める計算病理研究者向けに, 簡潔な概要を提示する。
論文 参考訳(メタデータ) (2024-01-14T12:38:49Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - Deepfake histological images for enhancing digital pathology [0.40631409309544836]
我々は,クラスラベルに制約された病理像を合成する生成逆ネットワークモデルを開発した。
前立腺および大腸組織像の合成におけるこの枠組みの有用性について検討した。
大腸生検によるより複雑な画像へのアプローチを拡張し,そのような組織における複雑な微小環境も再現可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T17:11:08Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Machine Learning Methods for Histopathological Image Analysis: A Review [62.14548392474976]
病理組織像 (HIs) は癌診断における腫瘍の種類を評価するための金の基準である。
このような分析を高速化する方法の1つは、コンピュータ支援診断(CAD)システムを使用することである。
論文 参考訳(メタデータ) (2021-02-07T19:12:32Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z) - Deep neural network models for computational histopathology: A survey [1.2891210250935146]
深層学習は がん組織像の分析と解釈において 主流の方法論選択となりました
本稿では,現在使われている最先端の深層学習手法について概説する。
私たちは、現在のディープラーニングアプローチにおける重要な課題と制限と、将来の研究への道のりを強調します。
論文 参考訳(メタデータ) (2019-12-28T01:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。