論文の概要: Realization of Stochastic Neural Networks and Its Potential Applications
- arxiv url: http://arxiv.org/abs/2011.06427v1
- Date: Thu, 12 Nov 2020 15:01:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 06:23:34.221649
- Title: Realization of Stochastic Neural Networks and Its Potential Applications
- Title(参考訳): 確率的ニューラルネットワークの実現とその応用
- Authors: S. Rahimi Kari
- Abstract要約: 継承型キャンセレーションデコーダは、従来のSCデコーダの実装以来、長い道のりを経ている。
長年にわたる主な闘争は、それらを実装するのに最適な方法を見つけることだった。
提案したアルゴリズムのほとんどは実生活で実装できるほど実用的ではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Successive Cancellation Decoders have come a long way since the
implementation of traditional SC decoders, but there still is a potential for
improvement. The main struggle over the years was to find an optimal algorithm
to implement them. Most of the proposed algorithms are not practical enough to
be implemented in real-life. In this research, we aim to introduce the
Efficiency of stochastic neural networks as an SC decoder and Find the possible
ways of improving its performance and practicality. In this paper, after a
brief introduction to stochastic neurons and SNNs, we introduce methods to
realize Stochastic NNs on both deterministic and stochastic platforms.
- Abstract(参考訳): 継承型キャンセルデコーダは従来のSCデコーダの実装から長い道のりを経てきたが、まだ改善の余地はある。
長年にわたる主な苦労は、それらを実装するための最適なアルゴリズムを見つけることだった。
提案されたアルゴリズムの多くは現実に実装できるほど実用的ではない。
本研究では,確率的ニューラルネットワークの効率をscデコーダとして導入し,その性能と実用性を改善する方法を見出す。
本稿では、確率ニューロンとSNNの簡単な紹介の後、決定的および確率的両方のプラットフォーム上で確率的NNを実現する方法を提案する。
関連論文リスト
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
そこで本研究では,局所探索機能を組み込んだ2段階学習手法と集団最適化アルゴリズムを併用した新しい手法を提案する。
実験の結果,提案手法は最先端の勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-26T17:31:15Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Exact Gradient Computation for Spiking Neural Networks Through Forward
Propagation [39.33537954568678]
従来のニューラルネットワークに代わるものとして、スパイキングニューラルネットワーク(SNN)が登場している。
本稿では,SNNの正確な勾配を計算できるEmphforward propagation (FP)と呼ばれる新しいトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-18T20:28:21Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Optimal Stopping via Randomized Neural Networks [6.677219861416146]
本稿では、標準基底関数やディープニューラルネットワークの代わりにランダム化されたニューラルネットワークを使用することの利点について述べる。
我々のアプローチは、既存のアプローチがますます非現実的になるような高次元問題に適用できる。
いずれにせよ、我々のアルゴリズムは、最先端や他の関連する機械学習アプローチよりも時間的に優れている。
論文 参考訳(メタデータ) (2021-04-28T09:47:21Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。