論文の概要: ADMM-Based Training for Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2505.05527v1
- Date: Thu, 08 May 2025 10:20:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-12 20:40:10.018122
- Title: ADMM-Based Training for Spiking Neural Networks
- Title(参考訳): ADMMによるスパイクニューラルネットワークの訓練
- Authors: Giovanni Perin, Cesare Bidini, Riccardo Mazzieri, Michele Rossi,
- Abstract要約: スパイクニューラルネットワーク(SNN)は、時系列処理とエネルギー消費の最小化によって、その可能性の高さから勢いを増している。
彼らはまだ、専用で効率的なトレーニングアルゴリズムを欠いている。
乗算器の交互方向法(ADMM)に基づく新しいSNN訓練法を提案する。
- 参考スコア(独自算出の注目度): 1.1249583407496218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, spiking neural networks (SNNs) have gained momentum due to their high potential in time-series processing combined with minimal energy consumption. However, they still lack a dedicated and efficient training algorithm. The popular backpropagation with surrogate gradients, adapted from stochastic gradient descent (SGD)-derived algorithms, has several drawbacks when used as an optimizer for SNNs. Specifically, it suffers from low scalability and numerical imprecision. In this paper, we propose a novel SNN training method based on the alternating direction method of multipliers (ADMM). Our ADMM-based training aims to solve the problem of the SNN step function's non-differentiability. We formulate the problem, derive closed-form updates, and empirically show the optimizer's convergence properties, great potential, and possible new research directions to improve the method in a simulated proof-of-concept.
- Abstract(参考訳): 近年、スパイクニューラルネットワーク(SNN)は、時系列処理とエネルギー消費の最小化によって勢いを増している。
しかし、彼らはまだ専用で効率的なトレーニングアルゴリズムを欠いている。
確率勾配勾配(SGD)に基づくアルゴリズムに適応した代理勾配を持つ一般的なバックプロパゲーションは、SNNのオプティマイザとして使用される場合にいくつかの欠点がある。
特に、スケーラビリティの低下と数値的な不正確さに悩まされている。
本稿では,乗算器の交互方向法(ADMM)に基づく新しいSNNトレーニング手法を提案する。
当社のADMMに基づくトレーニングは,SNNステップ関数の非微分可能性の問題を解決することを目的としている。
我々は、問題を定式化し、クローズドフォームの更新を導出し、シミュレーションされた概念実証において、最適化者の収束特性、大きなポテンシャル、そして新しい研究の方向性を実証的に示し、その方法を改善する。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
深層ニューラルネットワークのための統合トレーニングフレームワークを提案する。
我々は,事前条件付き勾配最適化を利用するMARSの3つの例を紹介する。
その結果,MARSの実装はAdamより一貫して優れていた。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - Randomized Forward Mode Gradient for Spiking Neural Networks in Scientific Machine Learning [4.178826560825283]
スパイキングニューラルネットワーク(SNN)は、ディープニューラルネットワークの階層的学習能力とスパイクベースの計算のエネルギー効率を組み合わせた、機械学習における有望なアプローチである。
SNNの伝統的なエンドツーエンドトレーニングは、しばしばバックプロパゲーションに基づいており、重み更新はチェーンルールによって計算された勾配から導かれる。
この手法は, 生体適合性に限界があり, ニューロモルフィックハードウェアの非効率性のため, 課題に遭遇する。
本研究では,SNNの代替トレーニング手法を導入する。後方伝搬の代わりに,前方モード内での重量摂動手法を活用する。
論文 参考訳(メタデータ) (2024-11-11T15:20:54Z) - Sign Gradient Descent-based Neuronal Dynamics: ANN-to-SNN Conversion Beyond ReLU Network [10.760652747217668]
スパイキングニューラルネットワーク(SNN)は、神経科学のメカニズムをシミュレートするために、多分野の領域で研究されている。
離散理論の欠如は、その性能と非線形性のサポートを制限することによって、SNNの実用化を妨げている。
我々は、スパイキングニューロンの離散力学の新しい最適化理論的視点を示す。
論文 参考訳(メタデータ) (2024-07-01T02:09:20Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Exact Gradient Computation for Spiking Neural Networks Through Forward
Propagation [39.33537954568678]
従来のニューラルネットワークに代わるものとして、スパイキングニューラルネットワーク(SNN)が登場している。
本稿では,SNNの正確な勾配を計算できるEmphforward propagation (FP)と呼ばれる新しいトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-18T20:28:21Z) - FFNB: Forgetting-Free Neural Blocks for Deep Continual Visual Learning [14.924672048447338]
我々は、新しい忘れのないニューラルブロック(FFNB)に基づく連続学習のための動的ネットワークアーキテクチャを考案する。
FFNB機能を新しいタスクでトレーニングするには、以前のタスクのnull-スペースのパラメータを制約する新しいプロシージャを使用する。
論文 参考訳(メタデータ) (2021-11-22T17:23:34Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
勾配計算を避けるため,データ同化に基づく勾配なし学習フレームワークを提案する。
その結果,提案手法は勾配法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-06T11:12:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。