論文の概要: Linear Dilation-Erosion Perceptron Trained Using a Convex-Concave
Procedure
- arxiv url: http://arxiv.org/abs/2011.06512v1
- Date: Wed, 11 Nov 2020 18:37:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 00:45:03.360595
- Title: Linear Dilation-Erosion Perceptron Trained Using a Convex-Concave
Procedure
- Title(参考訳): 凸凹法で訓練された線形拡張エロージョンパーセプトロン
- Authors: Angelica Louren\c{c}o Oliveira and Marcos Eduardo Valle
- Abstract要約: 本稿では, 線形変換を適用したテキストリニア・ディレーション・エロージョン・パーセプトロン(ell$-DEP)について述べる。
いくつかの分類問題を用いて,$ell$-DEPモデルと他の機械学習手法との比較を行った。
- 参考スコア(独自算出の注目度): 1.3706331473063877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical morphology (MM) is a theory of non-linear operators used for the
processing and analysis of images. Morphological neural networks (MNNs) are
neural networks whose neurons compute morphological operators. Dilations and
erosions are the elementary operators of MM. From an algebraic point of view, a
dilation and an erosion are operators that commute respectively with the
supremum and infimum operations. In this paper, we present the \textit{linear
dilation-erosion perceptron} ($\ell$-DEP), which is given by applying linear
transformations before computing a dilation and an erosion. The decision
function of the $\ell$-DEP model is defined by adding a dilation and an
erosion. Furthermore, training a $\ell$-DEP can be formulated as a
convex-concave optimization problem. We compare the performance of the
$\ell$-DEP model with other machine learning techniques using several
classification problems. The computational experiments support the potential
application of the proposed $\ell$-DEP model for binary classification tasks.
- Abstract(参考訳): 数学的形態学(英: Mathematical morphology、MM)は、画像の処理と解析に使用される非線形作用素の理論である。
モルフォロジーニューラルネットワーク(MNN)は、ニューロンがモルフォロジー演算子を計算するニューラルネットワークである。
ダイレーションと浸食はMMの基本演算子である。
代数的観点からは、拡張とエロージョンは、それぞれスプレム演算とインフィム演算に可換な作用素である。
本稿では,拡張とエロージョンを計算する前に線形変換を適用することによって与えられる<textit{linear dilation-erosion perceptron} (\ell$-dep) について述べる。
$\ell$-DEPモデルの決定関数は、ダイレーションと浸食を加えることで定義される。
さらに、$\ell$-DEPのトレーニングは凸凹最適化問題として定式化することができる。
いくつかの分類問題を用いて,$\ell$-DEPモデルの性能を他の機械学習手法と比較した。
計算実験は、二項分類タスクのための$\ell$-DEPモデルの潜在的な応用を支持する。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
ニューラル作用素におけるベイズの不確かさを近似する新しい枠組みを導入する。
我々の手法は関数型プログラミングからカリー化の概念の確率論的類似体と解釈できる。
我々は、異なるタイプの偏微分方程式への応用を通して、我々のアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - MgNO: Efficient Parameterization of Linear Operators via Multigrid [4.096453902709292]
我々は、ニューロン間の線形演算子をパラメータ化するために多重格子構造を利用するMgNOを紹介する。
MgNOは、他のCNNベースのモデルと比べてトレーニングの容易さが優れている。
論文 参考訳(メタデータ) (2023-10-16T13:01:35Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - A semigroup method for high dimensional elliptic PDEs and eigenvalue
problems based on neural networks [1.52292571922932]
ニューラルネットワークに基づく高次元楕円偏微分方程式(PDE)と関連する固有値問題を解くための半群計算法を提案する。
PDE問題では、半群演算子の助けを借りて元の方程式を変分問題として再構成し、ニューラルネットワーク(NN)パラメータ化による変分問題を解く。
固有値問題に対して、スカラー双対変数による制約を解消する原始双対法を提案する。
論文 参考訳(メタデータ) (2021-05-07T19:49:06Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Deep neural networks for inverse problems with pseudodifferential
operators: an application to limited-angle tomography [0.4110409960377149]
線形逆問題において擬微分演算子(Psi$DOs)を学習するための新しい畳み込みニューラルネットワーク(CNN)を提案する。
フォワード演算子のより一般的な仮定の下では、ISTAの展開された反復はCNNの逐次的な層として解釈できることを示す。
特に、LA-CTの場合、アップスケーリング、ダウンスケーリング、畳み込みの操作は、制限角X線変換の畳み込み特性とウェーブレット系を定義する基本特性を組み合わせることで正確に決定できることを示す。
論文 参考訳(メタデータ) (2020-06-02T14:03:41Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z) - Reduced Dilation-Erosion Perceptron for Binary Classification [1.3706331473063877]
ディレーション・エロージョン・パーセプトロン(Dilation-erosion Perceptron, DEP)は、ディレーションとエロージョンの凸結合によって得られるニューラルネットワークである。
本稿では,r-DEP(reduce Dilation-erosion)分類器を提案する。
論文 参考訳(メタデータ) (2020-03-04T19:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。