DiGNet: Learning Scalable Self-Driving Policies for Generic Traffic
Scenarios with Graph Neural Networks
- URL: http://arxiv.org/abs/2011.06775v3
- Date: Fri, 30 Jul 2021 00:56:58 GMT
- Title: DiGNet: Learning Scalable Self-Driving Policies for Generic Traffic
Scenarios with Graph Neural Networks
- Authors: Peide Cai, Hengli Wang, Yuxiang Sun, Ming Liu
- Abstract summary: We propose a graph-based deep network to achieve scalable self-driving that can handle massive traffic scenarios.
More than 7,000 km of evaluation is conducted in a high-fidelity driving simulator.
Our method can obey the traffic rules and safely navigate the vehicle in a large variety of urban, rural, and highway environments.
- Score: 26.558394047144006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional decision and planning frameworks for self-driving vehicles (SDVs)
scale poorly in new scenarios, thus they require tedious hand-tuning of rules
and parameters to maintain acceptable performance in all foreseeable cases.
Recently, self-driving methods based on deep learning have shown promising
results with better generalization capability but less hand engineering effort.
However, most of the previous learning-based methods are trained and evaluated
in limited driving scenarios with scattered tasks, such as lane-following,
autonomous braking, and conditional driving. In this paper, we propose a
graph-based deep network to achieve scalable self-driving that can handle
massive traffic scenarios. Specifically, more than 7,000 km of evaluation is
conducted in a high-fidelity driving simulator, in which our method can obey
the traffic rules and safely navigate the vehicle in a large variety of urban,
rural, and highway environments, including unprotected left turns, narrow
roads, roundabouts, and pedestrian-rich intersections. Demonstration videos are
available at https://caipeide.github.io/dignet/.
Related papers
- Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - DQ-GAT: Towards Safe and Efficient Autonomous Driving with Deep
Q-Learning and Graph Attention Networks [12.714551756377265]
Traditional planning methods are largely rule-based and scale poorly in complex dynamic scenarios.
We propose DQ-GAT to achieve scalable and proactive autonomous driving.
Our method can better trade-off safety and efficiency in both seen and unseen scenarios.
arXiv Detail & Related papers (2021-08-11T04:55:23Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
arXiv Detail & Related papers (2021-02-01T07:33:12Z) - Improving the Generalization of End-to-End Driving through Procedural
Generation [35.41368856679809]
We release an open-ended driving simulator called PGDrive to better evaluate and improve generalization of end-to-end driving.
We validate that training with the increasing number of procedurally generated scenes significantly improves the generalization of the agent across scenarios of different traffic densities and road networks.
arXiv Detail & Related papers (2020-12-26T06:23:14Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.