論文の概要: A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in
Brain Tumor Patients Using Dynamic Functional Connectivity
- arxiv url: http://arxiv.org/abs/2011.08813v1
- Date: Tue, 17 Nov 2020 18:18:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:48:59.351524
- Title: A Multi-Task Deep Learning Framework to Localize the Eloquent Cortex in
Brain Tumor Patients Using Dynamic Functional Connectivity
- Title(参考訳): ダイナミック・ファンクショナル・コネクティビティを用いた脳腫瘍患者の脳皮質局所化のためのマルチタスク深層学習フレームワーク
- Authors: Naresh Nandakumar, Niharika Shimona D'souza, Komal Manzoor, Jay J.
Pillai, Sachin K. Gujar, Haris I. Sair, and Archana Venkataraman
- Abstract要約: 脳腫瘍患者の大脳皮質の言語と運動領域を同時に局在させるために動的機能接続を用いた新しいディープラーニングフレームワークを提案する。
本モデルは,従来の深層学習手法よりも高い局所化精度を達成し,左半球側方化症例で訓練した場合でも,両言語領域を識別できる。
- 参考スコア(独自算出の注目度): 7.04584289867204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel deep learning framework that uses dynamic functional
connectivity to simultaneously localize the language and motor areas of the
eloquent cortex in brain tumor patients. Our method leverages convolutional
layers to extract graph-based features from the dynamic connectivity matrices
and a long-short term memory (LSTM) attention network to weight the relevant
time points during classification. The final stage of our model employs
multi-task learning to identify different eloquent subsystems. Our unique
training strategy finds a shared representation between the cognitive networks
of interest, which enables us to handle missing patient data. We evaluate our
method on resting-state fMRI data from 56 brain tumor patients while using task
fMRI activations as surrogate ground-truth labels for training and testing. Our
model achieves higher localization accuracies than conventional deep learning
approaches and can identify bilateral language areas even when trained on
left-hemisphere lateralized cases. Hence, our method may ultimately be useful
for preoperative mapping in tumor patients.
- Abstract(参考訳): 脳腫瘍患者の大脳皮質の言語と運動領域を同時に局在させるために動的機能接続を用いた新しいディープラーニングフレームワークを提案する。
提案手法は畳み込み層を利用して動的接続行列と長寿命メモリ(LSTM)アテンションネットワークからグラフベースの特徴を抽出し,分類中の時間点の重み付けを行う。
我々のモデルの最終段階は、異なる雄弁なサブシステムを特定するためにマルチタスク学習を採用する。
私たちのユニークなトレーニング戦略は、関心のある認知ネットワーク間の共有表現を見つけることで、欠如した患者データを処理することができます。
本手法は,脳腫瘍患者56名を対象に,課題fMRIアクティベーションをトレーニングとテストのためのサロゲートグラウンドトラスラベルとして用いながら,静止状態fMRIデータの評価を行った。
本モデルは,従来の深層学習手法よりも高い局所化精度を達成し,左半球側方化症例で訓練した場合でも,両言語領域を識別できる。
したがって,本法は腫瘍患者の術前マッピングに有用であると考えられた。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in Patients with Post-stroke Aphasia [12.129896943547912]
本稿では,脳卒中後失語症患者の安静時fMRI(r-fMRI)接続から言語能力を予測するために,病変認識型グラフニューラルネットワーク(LEGNet)を提案する。
本モデルでは,脳領域間の機能的接続を符号化するエッジベース学習モジュール,病変符号化モジュール,サブグラフ学習モジュールの3つのコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-03T21:28:48Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
機能的接続(FC)を用いた脳コネクトーム分類におけるパターン認識手法の最近の応用は、時間とともに脳コネクトームの認知的側面へとシフトしている。
本稿では,ヒトの自閉症スペクトラム障害(ASD)を同定するために,非時間変動ベイズフレームワークを提案する。
このフレームワークは、動的FCネットワークをまたいだリッチテンポラルパターンをキャプチャするための注意に基づくメッセージパッシングスキームを備えた、空間認識リカレントニューラルネットワークを組み込んでいる。
論文 参考訳(メタデータ) (2023-02-14T18:42:17Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Incremental Training of a Recurrent Neural Network Exploiting a
Multi-Scale Dynamic Memory [79.42778415729475]
本稿では,マルチスケール学習を対象とする,漸進的に訓練された再帰的アーキテクチャを提案する。
隠れた状態を異なるモジュールに分割することで、シンプルなRNNのアーキテクチャを拡張する方法を示す。
新しいモジュールがモデルに反復的に追加され、徐々に長い依存関係を学習するトレーニングアルゴリズムについて議論する。
論文 参考訳(メタデータ) (2020-06-29T08:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。