論文の概要: Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband
- arxiv url: http://arxiv.org/abs/2011.09241v1
- Date: Wed, 18 Nov 2020 12:30:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 03:47:05.795236
- Title: Indoor Point-to-Point Navigation with Deep Reinforcement Learning and
Ultra-wideband
- Title(参考訳): 深部強化学習と超広帯域を用いた屋内ポイントツーポイントナビゲーション
- Authors: Enrico Sutera, Vittorio Mazzia, Francesco Salvetti, Giovanni Fantin
and Marcello Chiaberge
- Abstract要約: 移動障害や非視線発生はノイズや信頼性の低い信号を生成する。
深部強化学習(RL)で学習した電力効率のよい局所プランナーが,ノイズショートレンジ誘導システムの完全解法として頑健かつ弾力性を持つことを示す。
この結果から, 計算効率のよいエンドツーエンドポリシは, 堅牢でスケーラブルで, 最先端の低コストナビゲーションシステムを実現することができることがわかった。
- 参考スコア(独自算出の注目度): 1.6799377888527687
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Indoor autonomous navigation requires a precise and accurate localization
system able to guide robots through cluttered, unstructured and dynamic
environments. Ultra-wideband (UWB) technology, as an indoor positioning system,
offers precise localization and tracking, but moving obstacles and
non-line-of-sight occurrences can generate noisy and unreliable signals. That,
combined with sensors noise, unmodeled dynamics and environment changes can
result in a failure of the guidance algorithm of the robot. We demonstrate how
a power-efficient and low computational cost point-to-point local planner,
learnt with deep reinforcement learning (RL), combined with UWB localization
technology can constitute a robust and resilient to noise short-range guidance
system complete solution. We trained the RL agent on a simulated environment
that encapsulates the robot dynamics and task constraints and then, we tested
the learnt point-to-point navigation policies in a real setting with more than
two-hundred experimental evaluations using UWB localization. Our results show
that the computational efficient end-to-end policy learnt in plain simulation,
that directly maps low-range sensors signals to robot controls, deployed in
combination with ultra-wideband noisy localization in a real environment, can
provide a robust, scalable and at-the-edge low-cost navigation system solution.
- Abstract(参考訳): 屋内の自律ナビゲーションには、ロボットが散らかっている、非構造的でダイナミックな環境を案内できる、正確で正確なローカライズシステムが必要である。
超広帯域(UWB)技術は、屋内位置決めシステムとして、正確な位置決めと追跡を提供するが、移動障害や非視線発生はノイズや信頼性の低い信号を生成する。
センサーノイズ、非モデル化されたダイナミックス、環境変化と組み合わせることで、ロボットの誘導アルゴリズムが失敗する可能性がある。
本稿では,UWBローカライゼーション技術と組み合わせることで,高効率で低計算コストのローカルプランナである深部強化学習(RL)が,ノイズショートレンジ誘導システム完全解の堅牢かつ弾力性を実現することを実証する。
ロボットの動作とタスクの制約をカプセル化したシミュレーション環境でRLエージェントを訓練し,UWBの局所化を用いた2回以上の実験実験を行い,実環境で学習したポイントツーポイントナビゲーションポリシーを検証した。
実環境における超広帯域雑音定位と組み合わせて展開する低域センサ信号を直接ロボット制御にマッピングする,計算効率のよいエンドツーエンドポリシーは,堅牢でスケーラブルで低コストなナビゲーションシステムを実現することができることを示す。
関連論文リスト
- Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Mission-driven Exploration for Accelerated Deep Reinforcement Learning
with Temporal Logic Task Specifications [11.812602599752294]
未知の構造を持つ環境で動作している未知のダイナミクスを持つロボットについて考察する。
我々の目標は、オートマトン符号化されたタスクを満足する確率を最大化する制御ポリシーを合成することである。
そこで本研究では,制御ポリシーを類似手法と比較して顕著に高速に学習できるDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:59:58Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - GP-guided MPPI for Efficient Navigation in Complex Unknown Cluttered
Environments [2.982218441172364]
本研究では,モデル予測パスインターガル(MPPI)と局所知覚モデルを統合するオンライン学習ベースの制御戦略であるGP-MPPIを提案する。
我々は,2次元自律ナビゲーションタスクのシミュレーションおよび実世界の実験を通じて,提案した制御戦略の効率性とロバスト性を検証する。
論文 参考訳(メタデータ) (2023-07-08T17:33:20Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Optical flow-based branch segmentation for complex orchard environments [73.11023209243326]
シミュレーションでは、シミュレーションでは、シミュレーションされたRGBデータと光フローのみを用いてニューラルネットワークシステムを訓練する。
このニューラルネットワークは、忙しい果樹園環境において、追加の現実世界のトレーニングや、標準カメラ以外の特別な設定や機器を使用することなく、前景の枝のセグメンテーションを行うことができる。
その結果,本システムは高精度であり,手動ラベル付きRGBDデータを用いたネットワークと比較すると,トレーニングセットと異なる環境において,より一貫性と堅牢性を実現していることがわかった。
論文 参考訳(メタデータ) (2022-02-26T03:38:20Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Towards bio-inspired unsupervised representation learning for indoor
aerial navigation [4.26712082692017]
本研究では,生物にインスパイアされた深層学習アルゴリズムによる同時位置決めとマッピング(SLAM)とそのドローンナビゲーションシステムへの応用について述べる。
本稿では,低次元潜在状態記述子を出力し,知覚的エイリアスに対する感度を軽減し,高効率な組込みハードウェアの開発を行う教師なし表現学習手法を提案する。
設計したアルゴリズムは,室内の倉庫環境において収集されたデータセットに基づいて評価され,最初の結果はロバストな屋内航法の実現可能性を示している。
論文 参考訳(メタデータ) (2021-06-17T08:42:38Z) - Vision-Based Autonomous Drone Control using Supervised Learning in
Simulation [0.0]
室内環境におけるMAVの自律的ナビゲーションと着陸にSupervised Learningを用いた視覚に基づく制御手法を提案する。
我々は、低解像度画像とセンサー入力を高レベル制御コマンドにマッピングする畳み込みニューラルネットワーク(CNN)を訓練した。
我々のアプローチは、類似の強化学習アプローチよりも短いトレーニング時間を必要としており、匹敵するSupervised Learningアプローチが直面する手動データ収集の限界を克服する可能性がある。
論文 参考訳(メタデータ) (2020-09-09T13:45:41Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。