Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution
- URL: http://arxiv.org/abs/2011.09701v2
- Date: Tue, 8 Dec 2020 13:38:53 GMT
- Title: Spectral Response Function Guided Deep Optimization-driven Network for
Spectral Super-resolution
- Authors: Jiang He, Jie Li, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang
- Abstract summary: This paper proposes an optimization-driven convolutional neural network (CNN) with a deep spatial-spectral prior.
Experiments on two types of datasets, including natural and remote sensing images, demonstrate the spectral enhancement effect of the proposed method.
- Score: 20.014293172511074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral images are crucial for many research works. Spectral
super-resolution (SSR) is a method used to obtain high spatial resolution (HR)
hyperspectral images from HR multispectral images. Traditional SSR methods
include model-driven algorithms and deep learning. By unfolding a variational
method, this paper proposes an optimization-driven convolutional neural network
(CNN) with a deep spatial-spectral prior, resulting in physically interpretable
networks. Unlike the fully data-driven CNN, auxiliary spectral response
function (SRF) is utilized to guide CNNs to group the bands with spectral
relevance. In addition, the channel attention module (CAM) and reformulated
spectral angle mapper loss function are applied to achieve an effective
reconstruction model. Finally, experiments on two types of datasets, including
natural and remote sensing images, demonstrate the spectral enhancement effect
of the proposed method. And the classification results on the remote sensing
dataset also verified the validity of the information enhanced by the proposed
method.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution [0.5461938536945723]
We propose an advanced feature extraction module called Channel and Spatial Attention Feature Extraction (CSA-FE)
Our proposed method helps the model focus on the specific channels and spatial locations containing high-frequency information so that the model can focus on relevant features and suppress irrelevant ones.
Our model achieved superior performance compared to various existing models.
arXiv Detail & Related papers (2024-05-07T18:15:51Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
We design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images.
Considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation.
Various experiments and quality indexes show our approach's superiority compared with other state-of-the-art methods.
arXiv Detail & Related papers (2021-09-05T14:00:34Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
High-dimensional and complex spectral patterns in hyperspectral image make it difficult to explore spatial information and spectral information among bands simultaneously.
The number of available hyperspectral training samples is extremely small, which can easily lead to overfitting when training a deep neural network.
We propose a novel Spatial-Spectral Feedback Network (SSFN) to refine low-level representations among local spectral bands with high-level information from global spectral bands.
arXiv Detail & Related papers (2021-03-07T13:28:48Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.